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Abstract—With the rapid development of cloud systems, an
increasing number of service workloads are deployed in the
private cloud and/or public cloud. Although large cloud providers
such as Azure and Google have published workload traces in the
past, prior work has not focused on analyzing and characterizing
the differences between private and public cloud workloads in
detail. Based on our experience working with Azure, one of the
most widely used cloud platforms in the world, we find that the
workload characteristics are different between the private and
public cloud workloads. Specifically, compared with the public
cloud workloads, the private cloud workloads tend to be more
homogeneous in both deployment sizes and utilization patterns,
more static with occasional bursts in deployment characteristics,
and more region-agnostic regarding the sensitivity to deployed
regions. Our findings gain several insights and implications
on cloud management and motivate us to build a centralized
workload knowledge base.

Index Terms—Cloud workloads, workload characteristics, re-
source management

I. INTRODUCTION

Cloud computing has become increasingly popular over the
years with a booming number of businesses migrating their
workloads to big public cloud platforms, such as Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud Platform
[1], [2]. Depending on business needs, customers may place
their workloads on the private cloud hosting their own ser-
vices, or they may choose the public cloud to share resources
with other customers. According to the cloud computing trend
report [3], 89% of customers adopt a multi-cloud strategy
with 80% of users taking a hybrid approach for placing their
workloads on both private and public clouds. This also applies
to the above large cloud providers, who also operate their
own services, such as Amazon.com in AWS and Microsoft
365 in Azure, as the first-party workloads on both the public
and private clouds, in addition to providing cloud services to
external customers for hosting the third-party workloads on
the public cloud.

As the main target customers are different for the private and
public cloud platforms, one may wonder whether the charac-
teristics of hosted workloads are different as well. It is known
that better understanding on workload characteristics can be
helpful for making optimal decisions on cloud management,

such as resource allocations, batch jobs scheduling, disaster
recovery [4], and Virtual Machine (VM) migration [5], [6].
For instance, to avoid service interruption, the cloud platform
could choose to migrate out VMs from nodes with unhealthy
signals that may indicate hard disk failure [7]. With knowledge
of the lifetime of VMs running on this node [8], the cloud
platform can optimize this procedure by only migrating out
VMs with long remaining time.

While there exist several studies providing extensive infor-
mation on the general characteristics of workloads in cloud
platforms (see Section VI for more details), those works tend
to focus on workloads belonging to a single platform, either
private or public cloud [5], [9]. The closest study to our work
is the characterization of first-party and third-party workloads
running on the public cloud Azure [8]. Although the first-
and third-party workloads are distinguished, that work focuses
more on their similarity rather than differences. Moreover, as
first-party services can selectively place workloads between
the private and public clouds, the obtained characteristics of
first-party workloads can be different between these two cloud
platforms. Therefore, correct characterization of workloads of
each cloud platform is needed, and it is likely that workloads
belonging to different groups display distinctive characteristics
and need to be managed by cloud platforms under different
rules. Applying uniform management polices based on the
general characteristics of workloads could fail to deliver ex-
pected results or yield suboptimal decisions on each individual
cloud platform.

In this study, we aim to explore the characteristics of work-
loads presented in the private and public clouds so that better
design and management solutions can be obtained for each
of them. In consideration for various optimization aspects, we
study the workload characteristics of VM deployment and re-
source utilization, dig out insights and explore the implications
brought for different opportunities on resource management in
different cloud platforms. Our investigations are performed
over the data involving millions of VMs collected over two
large-scale private and public cloud platforms belonging to
Azure. By distinguishing the private cloud workloads and
public cloud workloads, our study firstly reveals the key
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Fig. 1. (a) CDFs of the normalized number of VMs per subscription for
private and public cloud workloads at a particular time. (b) Box-plots of the
normalized number of subscriptions per cluster. The labels on the left (right)
y-axis correspond to the private (public) cloud. The boundaries of the whiskers
are based on the 1.5 interquartile range.

differences in characteristics between them. Specifically, it
shows that the deployment and utilization patterns of private
cloud workloads are more homogeneous compared to those of
public cloud workloads. Moreover, the temporal deployment
patterns of private cloud workloads tend to be more static most
of the time with occasional bursts. In contrast, more prominent
diurnal deployment patterns are often found among public
cloud workloads. Finally, private cloud workloads are more
likely to be region-agnostic, allowing them to be deployed
in any region without compromising user experience. These
findings can help us to devise management strategies more
customized for each individual cloud platform.

We have made the following contributions:

• We present a large-scale study to identify the differences
between private and public cloud workloads in terms of
deployment characteristics and resource utilization, and
highlight the dependence of efficient and robust cloud
operations on such workload characteristics.

• We point out that such differences can lead to different
management strategies and optimization opportunities in
different private or public cloud.

• We confirm the importance of leveraging workload char-
acteristics through real practice and motivating us to build
a centralized workload knowledge base in the future.

II. BACKGROUND AND DATASET

Azure. Azure is one of the most widely used cloud providers
in the world, which contains both private and public cloud
platforms. In our analysis, the private and public cloud
workloads are deployed in separate clusters, which contain
thousands of nodes with identical Stock Keeping Unit (SKU)
configurations. These clusters are hosted in datacenters located
over different regions (geo-locations).

Terminology. Each user, either the internal user or the external
user, can create one or more Azure subscriptions. A subscrip-
tion deploys VMs into a region (one or more datacenters)
selected by the users. Allocation services in Azure will then
place requested VMs into physical nodes (servers) [10]. Nodes
are often stacked in racks, which may be served as fault
domains in the cloud platforms.

Dataset. Results presented in this article are based on a repre-
sentative dataset on the activities of workloads on Azure over
an ordinary one-week period without any holiday1. To ensure
that our findings are statistically meaningful and consistent
across time, we obtain millions of VMs owned by tens of
thousands of subscriptions. Specifically, we collect data of all
clusters in the private cloud and sample a similar number of
clusters in public cloud at random to make them comparable.
The resulting number of VMs in public cloud is similar to the
total number of VMs in private cloud. The dataset includes
the detailed information of VMs, (e.g., subscription, VM size,
etc. ) and the average resource utilization of VMs (reported
every 5 minutes). The private cloud workloads are first-party
workloads, i.e., Microsoft workloads, which in terms of the
functionality are dominated by web application services, data
analytic services, and real time communication services. The
public cloud workloads consist of first-party workloads as well
as third-party workloads i.e., customer workloads, thus are
more opaque to the cloud platform and diverse by intuition.
Both private and public cloud workloads have Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) VMs.

III. DEPLOYMENT CHARACTERISTICS

In this section, we discuss the deployment characteristics
of private and public cloud workloads from several aspects.
We first summarize the basic properties of VM deployment
including the deployment size and VM size (Section III-A).
We then dive into the detailed deployment behavior over time
by studying the VM number variation at different levels (Sec-
tion III-B). Finally, we study the deployment characteristics in
the spatial domain (Section III-C).

A. Basic Properties

VM deployment size. We start by analyzing the deployed
number of VMs at the subscription level. Figure 1(a) presents
the Cumulative Distribution Functions (CDFs) of the normal-
ized number of VMs per subscription for the workloads in
private (blue solid curve) and public (red dashed curve) cloud
at one time point on a weekday. Similar results (not shown)
are also observed at other time points in the studied week.
It shows that private cloud workloads are deployed in larger
groups than public cloud workloads. As clusters in private and
public cloud have similar sizes, the difference in deployment
sizes suggests that clusters in the public cloud would host more
subscriptions compared to clusters in the private cloud. This
is confirmed by the observation shown in Figure 1(b), which
indicates that a public cloud cluster hosts about 20 times more
subscriptions than a private cloud cluster at the median level.
VM Size. We then explore the distributions of the number
of CPU cores and the amount of memory used by each VM.
Figure 2 shows the heatmaps for the normalized number of

1Due to the confidential policies of Azure, we omit certain exact numbers
and times of the dataset, instead, we provide more relevant workload statistics
and trends through normalization. Normalization units refer to quantities in
the private cloud with specific choices depending on the contexts of analysis.
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Fig. 2. Heatmaps of normalized core and memory sizes per VM for private
(left) and public (right) cloud workloads.

CPU cores and normalized amount of memory per VM for
private (left) and public (right) cloud workloads. While the
distributions of VMs’ core and memory sizes are largely
similar between the private and public cloud workloads, the
distribution of the public cloud workloads extends to both
the top right and bottom left corners of Figure 2(b), which
suggests a non-negligible demand for relatively large and small
VMs (both in the number of cores and the amount of memory)
among the public cloud customers.

Insight 1: Tendency to create larger deployment
sizes is observed for the private cloud workloads,
and workloads in the public cloud clusters are more
diverse in terms of the number of subscriptions and
the range of VM sizes.

Implication. The presence of high-level workload homogene-
ity in the private cloud clusters poses several challenges for
the management of cluster efficiency and capacity. Firstly,
the large deployment size makes private cloud workloads
more prone to allocation failures, especially when clusters are
reaching capacity limits. Secondly, for better fault tolerance,
cloud platforms often spread workloads of the same service
over multiple fault domains (e.g., racks). As a result, in private
cloud clusters with less diverse workloads, it is often harder
to place additional workloads on the same fault domain due
to the higher chances of encountering workloads belonging
to the same service. Considering the additional observation
that the private cloud workloads are less diverse in terms of
VM sizes, the efficiency of private cloud clusters can be quite
sensitive to the placements and management of workloads, and
more sophisticated and holistic approaches based on workload
profiles, which are more accessible in the private cloud, would
be needed.

B. VM Deployment in Temporal Domain

VM lifetime. As VMs are created and removed in both high
quantity and frequency in the cloud platform, the deployment
characteristics in the temporal domain can offer valuable
information for improving efficiency. Figure 3(a) displays the
CDFs of normalized VM lifetimes for private and public cloud
workloads in a week. The VM lifetime is defined as the time
between the creation and termination of a VM. Note that we
only include the VMs started and ended in the week to be

consistent with the time span of the dataset. It shows that
49% of private cloud VMs fall in the shortest lifetime bin,
as compared to 81% of public cloud VMs in the same bin.
The trend continues over the whole range of the x-axis. This
observation suggests that the public cloud customers deploy
more short-lived VMs (in percentage) compared to the private
cloud customers.

VM number. We then dive into the detailed VM deployment
behavior by studying the change of VM counts over time.
Figure 3(b) shows the normalized VM counts per hour in one
sampled region over the selected week. For both private and
public cloud workloads, the temporal changes of VM count
largely follow a diurnal pattern during weekdays and exhibit
a significant decrease over weekends. Moreover, compared to
the pattern of VM counts for the public cloud workloads, the
pattern of VM counts of the private cloud workloads tends to
be less regular with occasionally large spikes. These spikes
are not due to data quality issues but are mainly caused by
the deployment behavior of some large services.

We further study the temporal variation in the numbers of
VMs created per hour, as shown in Figure 3(c). For the public
cloud workloads, the number of VMs created per hour follows
a clear and stable diurnal pattern. In contrast, for the private
cloud workloads, while the number of VMs created per hour
usually stays at a low amplitude with little variation, bursts in
which a large number of new VMs are created occasionally
are observed. This burst is consistent with the spikes observed
in the VM number variation of private cloud workloads. VM
removal behavior is also studied and the observed temporal
pattern is similar to that of VM creation.

To further examine whether the above temporal patterns of
deployment can be observed in other geographic regions, we
first quantify the temporal variation of VM number creation
per hour with the coefficient of variation (CV) variable.
The CV is defined as the ratio of standard deviation to the
mean, and in the current context, it is computed over the
distribution of the VM number creation per hour over one
week. Namely, for each curve in Figure 3(c), we compute
its CV by aggregating over the time dimension and obtain a
larger value for the private cloud case due to the presence
of the bursts. After obtaining the values of CV for other
regions, we display their region-level distributions for both
private and public clouds as box-plots in Figure 3(d). It shows
that the hourly VM creations of private cloud workloads tend
to have larger values of CV compared to that of public cloud
workloads, indicating that similar bursty temporal patterns also
present in other regions.

Insight 2: The temporal deployment patterns of
private cloud workloads mainly consist of low-
amplitude deployments with occasional bursts,
while more prominent and regular diurnal deploy-
ment patterns are found in public cloud workloads.

Implication. For the public cloud workloads, the observed
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Fig. 3. (a) CDFs of normalized VM lifetimes in a week. (b) Variations of normalized VM counts per hour at one region. (c) Variations of normalized
numbers of VMs created per hour at one region. (d) Box-plots of CVs (over the temporal distributions of VM number creation per hour) across regions.

diurnal deployment patterns are mostly due to the auto-scaling
features provided by the cloud platform that automatically
adjust the number of VMs based on business needs. As the
platform resources are under-utilized during the valley of
such a diurnal pattern, for short-lived VMs hosting public
cloud workloads, one may consider adopting the spot VMs
[11], [12], [13], [14] to reduce cost and improve platform
resource utilization, especially during valley hours. The pre-
vious observation that 81% of public cloud VMs fall into
the shortest lifetime bin shows the considerable number of
candidate VMs for this adoption. This also has motivated us
to develop more advanced technology (e.g., spot VM eviction
rate prediction [15] and dynamic mixture of spot and on-
demand VMs [16]) for better support spot VM adoption.

For the private cloud workloads, however, due to the
less regular deployment patterns and the large deployment
size observed above, opting for auto-scaling features for the
private cloud workloads can often create large variations
in the counts of deployed VMs, which may increase the
chances of allocation failures especially when the capacity
is running low. Moreover, the irregular deployment patterns
of private cloud workloads also do not match well with
their actual resource utilization patterns, which are mostly
diurnal as will be discussed in Section IV. Correspondingly, a
better workload-aware allocation failure prediction method and
dynamic resource over-subscription system [6], [17] can be
critical for improving the efficiency of capacity management
for the private cloud workloads. For example, for dynamic
resource over-subscription system, by leveraging the varying
usage patterns of VMs, resources can be assigned at a lower
level than peak usage without affecting performance. As such,
over-subscription assigns fewer resources to each VM than re-
quested, but allows VMs to use more resources if the physical
machine has spare capacity. Note that there is a small chance
that all VMs may reach their peak usages simultaneously. It
is therefore necessary to consider the risk when coordinating
resource utilization. This problem can be addressed through
chance-constrained optimization framework, which has been
shown to improve utilization by 20% to 86% [17] in Azure
compared to baseline methods, depending on the level of
safety constraint.
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Fig. 4. (a) CDFs of the normalized deployed regions per subscription. (b)
CDFs of the normalized deployed regions per subscription in terms of its
allocated core size.

C. VM Deployment in Spatial Domain

Finally, we study the deployment characteristics in the spa-
tial domain, which has been briefly discussed in Section III-A
through the study on the number of subscriptions at the cluster
level (see Figure 1(b)). Here we extend the analysis to the
region level. Figure 4(a) presents the CDFs of the normalized
numbers of deployed regions per subscription for private and
public cloud workloads. It shows that although more than 50%
of subscriptions for both types of workloads make deployment
in a single region, private cloud workloads tend to deploy over
more regions in the rest of the subscriptions. In terms of the
subscriptions’ actual resource usage, as shown in Figure 4(b),
the subscriptions deployed in a single region make up 40% of
core usage for the private cloud workloads, so the majority of
the cores are used by the subscriptions with multiple-region
deployment in the private cloud. On the contrary, 70% of cores
in the public cloud are used by single-region subscriptions. We
will discuss the implication of the cross-region feature of the
private cloud workloads in Section IV-B.

IV. RESOURCE UTILIZATION

In this section, we first classify the CPU utilization pat-
terns into four typical types and analyze the CPU utilization
distributions across time, comparing public and private cloud
workloads (Section IV-A). Then, we discuss the spatial distri-
bution of resource utilization (Section IV-B).

A. Temporal Utilization Pattern

According to our observation, the VM CPU utilization
patterns can be classified into four types, i.e., diurnal, sta-
ble, irregular, and hourly-peak. We adopt this categorization
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Fig. 5. Typical utilization patterns of workload and their distribution. (a)-(c) Sample of typical utilization patterns. (d) Normalized percentage of each typical
utilization pattern in private and public cloud respectively at a particular time.

to leverage these patterns for optimization, for example, as
diurnal workloads introduce peak and valley hour of resource
usage, it calls for specific optimization strategy for resource
management. Figure 5(a-c) illustrate four typical temporal
patterns of CPU utilization for some sampled VMs. The first
three patterns, the diurnal, stable, and irregular patterns are
all displayed over a one-week period, while the hourly-peak
pattern is shown over a one-day period. Figure 5(d) illustrates
the relative proportions of these patterns in private and public
clouds.

Diurnal. As shown in Figure 5(a), CPU utilization exhibits
a daily periodic pattern (high during daytime and low during
nights) in CPU utilization, which is related to user activity
and can be detected using the approach discussed in [18]. This
pattern also shows a clear difference between weekdays and
weekends. Specifically, the peak value of CPU utilization is
around 60% during weekdays but reaches only about 20%
during weekends. VMs with such a utilization pattern would
present great challenges for the cloud platform to balance
resource utilization between daytime and night and between
weekdays and weekends. As shown in Figure 5(d), the diurnal
patterns are the most common patterns in both private and
public cloud workloads. Private cloud workloads have roughly
double the diurnal patterns as of public cloud workloads,
implying that private cloud workloads are more user-facing.

Stable. The stable pattern is extracted by restricting the
standard deviation of CPU utilization, as illustrated in top of
Figure 5(b). Such type of VMs provides an opportunity for
harvesting idles CPU resources with options such as over-
subscription. The share of workloads with the stable pattern
in public cloud is higher than that in private cloud, suggesting
that the public cloud workloads are more stable and suitable
to adopt over-subscription.

Irregular. Apart from diurnal and stable patterns, the remain-
ing pattern is the irregular one, as shown in the bottom of
Figure 5(b), while the CPU utilization is lower than 10%
most of the time, it can raise to over 60% for a short time
with no apparent sign. Due to this irregular resource usage
behavior, it can be difficult and risky to impose aggressive
resource management strategies on such type of VMs. In both
private and public cloud workloads, this type of utilization
pattern is relatively rare, as shown in Figure 5(d).

Hourly-Peak. Hour-peak is a special diurnal pattern, which

is also extracted using period detection approach [18] (period
equal to one hour). In the pattern shown in Figure 5(c), regular
peaks at the beginning of the hour/half-hour can be observed.
This pattern often appears in private cloud workloads support-
ing various work-related activities, as shown in Figure 5(d).
For instance, as online meetings are often scheduled to start
at the hour or half-hour marks, high CPU utilization peaks
in supporting VMs can appear when users are joining the
scheduled meetings.

Since the diurnal pattern is the dominant one in both public
cloud and private cloud, we narrow down to characterize the
CPU utilization distributions across time, with the comparisons
between private and public cloud workloads. To explore the
temporal distribution of resource utilization, we analyze CPU
utilization of private and public cloud workloads over one
week, as shown in Figure 6(a) and Figure 6(b). According to
the 75-percentile, we observe that CPU utilization for both
private and public clouds is lower than 30%. In addition,
considering the values of different percentiles, CPU utilization
of public cloud is more stable than private cloud. This may
be also related to that work-related activities account for
more proportions in the private cloud workloads, and thus
the CPU utilization relatively drops during the weekends for
private cloud. We further characterize the daily CPU utilization
distribution for private and public cloud workloads, as shown
in Figure 6(c) and Figure 6(d). We observe that CPU utilization
for private cloud changes across the whole day, following a
roughly working-hour pattern at the hourly granularity, while
for public cloud is almost constant. This observation shares
the same insight as from Figure 5(d).

Insight 3: As utilization patterns can vary signif-
icantly among workloads, correct characterization
of them can be critical for determining the right
management strategy that fits with the resource
usage of workloads.

Implication. Hour-peak is a unique pattern which brings
different opportunities in resource management and calls for
appropriate management strategies in private cloud, such as
predictive resource pre-provisioning [19] and leveraging over-
clocking techniques to absorb utilization peaks [20]. Work-
loads with hourly-peaks are more common in the private
cloud while relatively rarer in the public cloud, as work-
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Fig. 6. CPU utilization distribution of the private and public cloud workloads,
over a week (a, b) and within a day (c, d).

related activities (e.g., Microsoft 365 services) account for
more proportions in the private cloud workloads.

As the private cloud is dominated by diurnal workloads,
more workloads of other utilization patterns need to be im-
ported to reduce under-utilized resource during the valley hour.
For example, identifying deferrable workloads and schedule
them to the valley hour would be a feasible way to leverage
the observed utilization pattern in private cloud for resource
management optimization.

B. Spatial Distribution of Resource Utilization

In this spatial distribution analysis of resource utilization,
we aim to answer two questions: a) whether workloads co-
located on the same node have similar utilization patterns;
b) how utilization patterns differ among deployed regions for
workloads under the same subscription. The first question is
to address how resources are shared by leveraging statistical
multiplexing in cloud platforms, and the second one would
help us to identify the so-called region-agnostic workloads,
which are not sensitive to deployed regions and can play an
important role in the region-level resource management.

Workloads similarity at the node level. To characterize the
similarity of workloads in each node, we calculate the Pearson
correlation [21] of CPU utilization between VMs and their
host node. As the node CPU utilization mostly originates from
the usage of VMs, its higher correlation with hosted VMs
indicates that the utilization patterns among hosted VMs are
similar. Please note that we filter out the trivial case that nodes
only host one VM, which is a small percentage of both private
and public cloud nodes. Figure 7(a) shows the CDFs of the
correlation for private and public cloud workloads. We observe
that the median value of the correlation score of private cloud
workloads (0.55) is higher than that of public cloud (0.02).
It indicates that the utilization patterns of VMs in each node
are more similar in the private cloud, suggesting that private
cloud is more homogeneous in terms of both deployment and

resource usage. This also agrees with the previous observation
that the private cloud workloads are more homogeneous than
the public cloud workloads.

Workloads similarity at the region level. According to Sec-
tion III-C, there exist a large fraction of subscriptions that have
deployments over multiple regions. It would be interesting to
explore the similarity of workload utilization patterns across
regions for those subscriptions. This is achieved by calculating
the Pearson correlation of CPU utilization in each pair of
deployed regions. To reduce the number of combinations, we
restrict the deployed regions to those in the US, which has
about 10 regions spreading over 9 time zones in our dataset
(enough number of regions for this analysis). Figure 7(b)
shows the CDFs of the correlation of workload utilization in
each region pair. Note that the utilization pattern used in the
correlation study is the averaged utilization computed at the
region level for each studied subscription. From Figure 7(b)
we observe a higher correlation of utilization across regions for
private cloud workloads, indicating those subscriptions in the
private cloud tend to have the same utilization pattern across
different regions.

Moreover, those subscriptions with similar utilization pat-
terns across regions may belong to the region-agnostic work-
loads, i.e., not sensitive to the deployed regions. For example,
Figure 7(c) gives the average CPU utilization of ServiceX in
different regions in one day. This service has prominent diurnal
and hourly-peak patterns and thus it is likely to be user-facing.
Although these regions are in separate time zones, the service
CPU utilization patterns are roughly peaked at the same time
points. This is contrary to the expectation for region-sensitive
user-facing workloads, for which one would observe shifted
peaks across different regions with different time zones. The
workload owner of ServiceX also confirmed our conjecture on
the region-agnostic nature of ServiceX by pointing out that a
geo-level load-balancer is adopted for routing users’ requests
across multiple regions.

Insight 4: Utilization patterns of workloads in each
node are more similar in the private cloud than in
the public cloud, showing a more homogeneous
nature of private cloud workloads. There exist a
large portion of subscriptions in the private cloud
whose utilization patterns are similar across re-
gions, suggesting that they are likely to be region-
agnostic.

Implication. The similar utilization pattern at the node level
for the private cloud indicates that workloads in the same node
are likely to have utilization peaks at the same time. That
would limit the room for oversubscribing resources to achieve
better utilization. The above utilization pattern analysis alone
is not sufficient to identify region-agnostic workloads as other
factors such as data locality, compliance issues, geo-specific
hardware constraints, and workload dependencies must also
be considered. However, the above case study suggests that a
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substantial number of region-agnostic workloads exist in the
private cloud. Leveraging their region-agnostic characteristics,
we can optimize their placement to achieve better capacity
management and sustainability for the cloud in various ways..
For instance, region-agnostic workloads can be relocated from
hot to cold regions (with regard to capacity usage) to balance
the capacity usage globally, reduce underutilized clusters, and
save cost. We may also shift more region-agnostic workloads
to regions that are more accessible to renewable energy,
which would benefit both the customer and cloud provider
in achieving better sustainability.

To comprehend the actual impact of region-agnostic work-
loads, we piloted a few experiments in Azure. In one of the
experiments, we focused on the Canadian regions, where one
of the regions had a high percentage of underutilized cores.
Using utilization data from these regions, we recommended
shifting the workload of Service-X from Canada-A to Canada-
B. As a result of this regional workload shift, the underutilized
core percentage of Canada-A decreased from 23% to 16%, and
the core utilization rate reduced from 42% to 37%, indicating
an improvement in the overall health of the source region.
Canada-B, which has sufficient idle capacities, showed minor
changes in terms of core utilization and underutilized core
percentage.

V. DISCUSSION

Extensive characterization for private and public cloud
workloads can bring considerable opportunities for improve-
ments in the cloud resource management. Currently, there
exists a gap between the characteristics of both public and pri-
vate cloud workloads and using them to formulate appropriate
management and optimization strategies for cloud platforms,
especially for large scale private cloud. This work serves as a
precursor for devising such strategies and shares the practices
adopted by Azure to improve resource management. We hope
our work will stimulate and inspire more studies from cloud
providers and benefit the community.

Although the high-level mechanisms of these optimization
methods are often generalizable over different cloud platforms,
they highly rely on the critical input of workload knowledge to
maximize their performances, which require a comprehensive
study on the differentiation of the workload characteristics
in different cloud platforms. Therefore, in order to obtain
a scalable solution that can easily extend to different cloud

platforms, one first needs to abstract out the common optimiza-
tion policies and then build a centralized workload knowledge
base, which continuously extracts workload knowledge from
telemetry signals (e.g., CPU utilization, VM lifetime) and
feeds them into the aforementioned optimization policies.
A workload knowledge base will then be the key pillar of
the future workload-aware intelligent cloud platform, and it
allows the cloud provider to maximally optimize the platform’s
performance by tailoring to its hosted workloads.

VI. RELATED WORK

There exist a plethora of works aiming for characterizing
workloads in cloud platforms. Related works in this area often
study workload characteristics related to resource utilization
and workload deployment such as lifetime or task duration [9],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31] and
explore the heterogeneity in those characteristics [32], [33],
[34], [35]. By providing insights on the heterogeneity and
disparity in the characteristics of workload deployment and
resource utilization, those works substantiate the need for new
cloud resource schedulers and provide critical design insights.

In addition to the aforementioned works, existing studies
also explore other workload characteristics including failure
distribution, correlation, arrival rate, and interference between
resources [36], [37], [38], volatility of resource demand and
usage by region and customer segments [39], [40], microser-
vice dependencies [41], [42]. For example, authors of [38]
study resource virtualization in data centers and shed light
on optimizing configuring VMs’ virtual resources, and [40]
focus on the time evolution of workload demands and resource
availability, providing a solid basis for capacity planning of the
cloud considering seasonality shift.

While most existing studies in this area focusing on work-
load traces from public clouds, some researchers also explore
the characterization of specific workload traces not originated
from public clouds, such as deep learning workloads from
GPU data centers [43], grid systems [44], and production
Hadoop cluster [45], [46]. There is limited work on charac-
terizing the private cloud. The most closed one to our work
is [47], however it focus only on one private enterprise cloud
without comparing to public cloud.

Different from the above works, we characterize the dif-
ferences between workloads in two large-scale private and
public cloud platforms belonging to the same cloud provider
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comprehensively, gain several insights and implications on
cloud management, and emphasize on the goal of maximally
optimizing the platform’s performance by tailoring to its
hosted workloads. For instance, we categorize the utilization
patterns and call for tailored optimization strategy. The node
level study and insights on region-agnostic workload are also
an unexplored area in current cloud management.

VII. THREATS TO VALIDITY

In this section, we address potential limitations and threats
to the validity of our study. We acknowledge that our dataset
has certain limitations, which may impact the generalizability
of our findings.

Our dataset focuses on private and public cloud provided
by Azure. Therefore, the findings that are highly dependent
on the workload types may not be directly applicable to other
cloud providers. The dataset covers a time period of one week,
specifically chosen without any holiday to minimize the impact
of external factors and extract common temporal patterns.
Consequently, our results may not fully capture the effects
of seasonality and holiday patterns.

VIII. CONCLUSION

Characterizing cloud workloads is important to create more
optimal resource provisioning and allocation techniques. In
this paper, we examine millions of VMs from a large-scale
real-world cloud provider, segregate private and public cloud
workloads and provide key findings to improve cloud resource
management.

With the study of characterising VM deployment and re-
source utilization, we found that the private cloud workloads
tend to be more homogeneous in both deployment sizes and
utilization patterns, more static with occasional bursts in de-
ployment characteristics, and more region-agnostic regarding
the sensitivity to deployed regions, which would motivate the
cloud provider to adopt for proactive resource provisioning and
global workload balancing. The implications from studying
the public cloud workloads suggest different optimization
opportunities such as spot VMs. Our insights will be useful
for improving the reliability, efficiency and sustainability of
cloud platforms.

In order to tailor management algorithms and systems by
cloud platforms for the optimal operation, a detailed under-
standing of the unique characteristics of workloads belonging
to different groups is critically needed. In our future work, we
will design and implement a centralized workload knowledge
base in order to better exploit workload insights for cloud
management.
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