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ABSTRACT
Cloud computing systems have become increasingly popular in
recent years. A typical cloud system utilizes millions of computing
nodes as the basic infrastructure. Node failure has been identified
as one of the most prevalent causes of cloud system downtime. To
improve the reliability of cloud systems, many previous studies col-
lected monitoring metrics from nodes and built models to predict
node failures before the failures happen. However, based on our
experience with large-scale real-world cloud systems in Microsoft,
we find that the task of predicting node failure is severely hampered
by missing data. There is a large amount of missing data, and the
online latest data utilized for prediction is even worse. As a result,
the real-time performance of the node prediction model is limited.
In this paper, we first characterize the missing data problem for
node failure prediction. Then, we evaluate several existing data
interpolation approaches, and find that node dimension interpola-
tion approaches outperform time dimension ones and deep learning
based interpolation is the best for early prediction. Our findings can
help academics and engineers address the missing data problem
in cloud node failure prediction and other data-driven software
engineering scenarios.

CCS CONCEPTS
• Computer systems organization → Cloud computing; • Soft-
ware and its engineering → Maintaining software.
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1 INTRODUCTION
With the rapid growth of cloud computing, a variety of workloads
have been shifted into the cloud due to its scalability and reliability.
To serve millions of users around the world, it is of great impor-
tance for cloud systems, such as Azure, AWS, and Google Cloud, to
provide highly reliable services, since any interruption or outage
will negatively impact user experience and result in considerable
economic loss. For example, Facebook became globally unavailable
for a period of six to seven hours on October 4, 2021 [37], and share
price of the company dropped by nearly 5%.

To ensure the reliability of cloud systems, tremendous efforts
have been devoted in the past decades, including failure prediction
[17, 21], anomaly detection [18, 24, 25], and root cause diagnosis
[11, 23]. Among these efforts, failure prediction is one of the most
fundamental topics because it may foresee and avoid failure rather
than react when it occurs, or after it has occurred. More specifically,
cloud systems are typically built on top of millions of computing
nodes, which provide physical hosts for virtual machines, storage,
and network. Node failure, such as hard drive failure [21] and
I/O block [45], is one of the top causes of service downtime [17].
Therefore, it is important to predict node failure in real time [41].

Previous studies build different machine learning models, espe-
cially temporal sequential models, such as LSTM [44], RNN [40],
NTAM [21], and TCNN [34] to predict node failure in real-time.
These models take the monitoring metrics, including node status
and specifically designed events [17], as input. However, based on
our experience working with the Microsoft 365 cloud systems, the
node failure prediction model suffers from low accuracy. That is, the
model is trained and tested on the offline monitoring metrics and
cannot obtain satisfactory results. When the model is performed in
an online environment, it performs even worse.

https://doi.org/10.1145/3540250.3558946
https://doi.org/10.1145/3540250.3558946
https://doi.org/10.1145/3540250.3558946
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Because the failure prediction model is severely hampered by
missing data in the monitoring metrics [5, 9, 11, 33]. The offline
monitoring metrics suffer from missing data and the online missing
data is more frequently caused by data delay, overload, etc. In the
literature, a large number of studies on missing data handling have
been proposed, which focus on interpolating the missing value
[4, 35]. However, handling missing data for node failure prediction
is still unexplored. As wewill show in this paper (Section 3), missing
data of monitoring metrics have some different characteristics than
the generic missing data problem, although they have much in com-
mon. For example, missing data are treated equally in the general
interpolation approaches, while monitoring metrics of nodes have
different features, such as error counter, operation counter, EVENT,
etc. Their data missing is caused by different reasons, which should
be treated differently.

To better understand the missing data problem for node failure
prediction in the cloud, we perform a large-scale empirical study of
missing data on millions of nodes1 in Microsoft, including widely-
usedMicrosoft products, Microsoft 365. In this study, we collect over
7 GB of monitoring metrics and uncover a significant proportion of
missing data for different causes. We also characterize missing data
in three different dimensions, that is, how data is missing among
nodes, within features, and over time. We find that the majority
of node monitoring metrics have the same missing percentage,
indicating similarity among nodes Finding 1 . Besides, different
features are caused by various reasons, i.e., data delay, monitoring
error, overload, or design. The EVENT feature must fill in empty
with zero because it is missing by design and zero indicates that
no event occurred at that moment Finding 2 . Moreover, missing
data dramatically increases in the latest time due to data delay.
Monitoringmetrics in the latest time contain additional information
(e.g., high I/O utilization) to help identify the failure nodes, but
is likely missing, causing prediction performance in real time to
degrade Finding 3 .

Since missing data is a severe problem in real-world practice,
we conduct experiments to assess the impact of missing data on
node failure prediction for cloud systems. We find that the F1-score
of the node failure prediction models declines by 57.33% when
faced with 20% more missing data, indicating its negative impact
and motivating us to explore solutions to handle it Finding 4 .
Therefore, we select widely-used interpolation approaches, i.e., zero
filling [27], forward filling [1], linear interpolation [30], average
value interpolation [35], Gaussian distribution sampling interpo-
lation [29], KNN based interpolation [7], and deep learning based
interpolation [4], from previous studies. More specifically, we apply
interpolation approaches to the time dimension and node dimen-
sion, which consider the similarity over time and among nodes,
respectively. Interestingly, we find that different models prefer dif-
ferent interpolation approaches. The node dimension interpolation,
on the other hand, performs substantially better than the time di-
mension interpolation by 3% on average Finding 5 , which can
be explained by our Finding 1 about similarity among nodes. These
interpolation approaches are efficient for online data interpolation,

1Due to the policy of Microsoft, we cannot disclose the actual number in this paper.

Figure 1: The overview of node failure prediction

except KNN based interpolation Finding 6 . According to our
Finding 3, we also evaluate the online data delay scenario to test
the performance of early prediction based on various interpolation
approaches. In this context, we find that deep learning based in-
terpolation performs the best, suggesting its capabilities for early
prediction Finding 7 .

To sum up, this work has the following contributions:

• To the best of our knowledge, we present the first comprehensive
study on handling missing data for node failure prediction in
real-world cloud systems.

• We point out that no existing interpolation approach is suitable
for all prediction models, however, the node dimension interpo-
lation approaches outperform the time dimension ones, and deep
learning based interpolation is the best for early prediction.

• We discuss the implications and lessons learned that can help
handle the missing data problem in cloud node failure prediction
and other data-driven software engineering scenarios.

The rest of this paper is organized as follows: we introduce
the background of node failure prediction in Section 2. Then, we
conduct an empirical study of missing data in cloud node failure
prediction in Section 3. Next, the empirical evaluation of missing
data interpolation is described in Section 4. We also discuss the in-
sights and lessons learned in Section 5. Finally, the related work and
conclusion are presented in Section 6 and Section 7, respectively.

2 BACKGROUND: NODE FAILURE
PREDICTION FOR CLOUD SYSTEMS

Cloud systems. Cloud computing is a novel paradigm for deliv-
ering computing as a service through the Internet. Cloud systems,
such as Microsoft Azure and Amazon Web Services, provide plat-
forms for software companies and developers to deploy software
applications and services. These cloud systems are built on top
of numerous physical servers, or “nodes”, which provide services
through virtualization technique. For large-scale cloud systems,
ensuring high service reliability is critical to provide good user ex-
periences and prevent financial loss [6]. Although much effort has
been made to ensure high service reliability, software or platform
failures (such as software crashes, network outages, misconfigu-
rations, memory leaks, hardware breakdowns, and so on) are still
negligible and challenging to deal with. In this study, we investigate
millions of nodes in Microsoft 365 Cloud Systems.
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Table 1: Node monitoring metrics

Type # Description Example(s)

Operation Timer 3
The timer for some common operations (operations for the
hard driver disks such as magnetic head’s seeking, spindle’s
spinning up, etc. )

Seek_Time_Performance
Spin_Up_Time
Head_Flying_Hours

Physical Characteristics 4 The measurement of physical characteristics, e.g., temperature
and humidity, etc.

Airflow_temperature

Operation Counter 11 Count of common operations, such as CPU utilization, load,
and power consumption.

Load_Cycle_Count
Power-Off_Retract_Count

Error Counter 12 Count of certain detectable errors. Usually these counters
remains unchanged unless certain error occurs.

High_Fly_Writes
Multi_Zone_Error_Rates

Logical Input & Output 12 Commonly used as an indicator of the Read or Write queue
lengths of the node.

LogicalDiskAvgRead_BucketIO
LogicalDiskAvgWrite_BucketIO

EVENT 12 Windows event are typically used for indicating exception
handling for Windows servers.

Event_id_7

Node failure. Node failure has been identified as one of the most
prevalent causes of system downtime [36], which can be caused by
service overloading, overheating, or hardware issues. If a node fails,
all virtual machines (VMs) on it will also fail, potentially affecting
service availability. Although node failure is inevitable, it is critical
to handle it efficiently, thus ensuring the reliability of cloud systems.
Node failure prediction. Figure 1 gives the overview of node fail-
ure prediction. Node failure prediction is important for improving
service reliability [17], since it allows us to take mitigation mea-
sures like VM allocation or VM live migration [10] if a node is about
to fail. To track the status of nodes, many monitoring metrics are
collected in Microsoft 365, which are of time-series format. Previous
research has discovered that comparable patterns, such as spike or
surge, of the monitoring metrics exist before node failure [40, 44],
making it possible to predict the node failure using the monitoring
metrics. These patterns, on the other hand, are difficult to character-
ize just based on the human effort by setting some static thresholds
of the monitoring metrics. To tackle this prediction problem, deep
learning based approaches are adopted and well performed in the
previous studies (see Section 4.2), because they have a high capacity
to learn from the historical data distribution.
Challenges in real practice. To predict node failures in real-
time, prediction models consume online monitoring metrics using a
sliding window in Microsoft 365. Multiple node monitoring metrics
are considered as features of the prediction models in a sliding
window. These models have been fine-tuned based on historical
data, yet they still fail to deliver satisfactory performance in the
online situation. Based on our analysis, we find that the quality
of monitoring metrics is not sufficient, that is, some values of the
features are missing or invalid at a certain time. The high missing
percentage, especially in the online setting due to data delay, results
in the low performance of prediction models (see Section 3.1).

3 AN EMPIRICAL STUDY ON MISSING DATA
IN CLOUD NODE FAILURE PREDICTION

We undertake the first empirical study on a real-world cloud system
to better understand missing data and its influence on node failure
prediction. We conduct a study on millions of nodes as subjects in a
large-scale cloud system, Microsoft 365. These subjects cover many
well-known products, e.g., Microsoft 365, which are used bymillions
of users worldwide. These subjects are frommany application fields
and developed by different product groups, demonstrating their
diversity. The size of collected monitoring metrics is up to 7 GB. To
our best knowledge, this is the most large-scale study that explores
the data missing problem in the literature. According to the policy
of Microsoft 365, We hide some details in this paper, such as the
specific time period for node data collection and the specific number
of collected node failures. Based on the maintenance records, these
nodes are labeled as normal or failure by domain experts. In the
study, we address the following research questions:

• RQ1: What are the characteristics of missing data in large-scale
cloud systems?

• RQ2: What are the root causes of missing data?

Table 1 shows the monitoring metrics of a node. The monitoring
metrics can be classified into six types, including operation timer,
physical characteristics, operation counter, error counter, logical
input/output, and EVENT data. The table contains a more extensive
discussion of these types and examples. These monitoring metrics
are collected in the same regular time interval, except for the EVENT
data. The prediction model adopts a sliding window to process
these metrics as a feature vector. If any value in the feature vector
is empty, data is missing from the model’s perspective. The missing
percentage is a relevant statistics through normalization.

3.1 RQ1: Characterizing the Missing Data
We further investigate the missing data distribution among nodes,
within features, and over time.
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Figure 2: Characterizing missing data

Among nodes. The missing percentage among nodes is illustrated
in Figure 2(a), where the node index is ranked by its missing per-
centage. We can observe that a lot of nodes have the same missing
percentage, for example, the majority of nodes have a missing per-
centage of less than 40%. This may be caused by the same root
causes, such as overload or monitoring error (see Section 3.2). Fur-
thermore, based on their missing percentage, these nodes may be
grouped into six groups (separated by the dashed lines), indicating
that the missing data problem can be treated uniformly according
to the limit group of nodes.

Finding 1: The majority of node monitoring metrics
have the same missing percentage, indicating similarity
among nodes.

Within features. Prediction models adopt 54 monitoring metrics
as features, including time series features and 12 EVENT features,
as shown in Table 1. We further investigate the missing percent-
age according to features. Figure 2(b) show the missing percentage
of features. The missing percentage for time series features and
EVENT features differs dramatically. For example, feature indexes
from 1 to 13 have the missing percentages of less than 10%, while
feature indexes 43 to 54, i.e., EVENT features have the missing per-
centage of near 100%. Because EVENT features are only collected
when certain events occur, not on a regular basis. It is not literally
missing, but the value is missing from the perspective of the pre-
diction model, which we called “missing by design” in Section 3.2.

Finding 2: Because node monitoring metrics, i.e., time-
series and EVENT are different in missing percentage,
separate missing data handling strategies are required.

Over time. Figure 2(c) shows the average and max-min bounds of
the missing percentage in the 72-hour time window. The prediction
model uses a 72-hour-long sliding window to predict the status
of the node. Therefore, the hour 72 is the latest time. From this
figure, we find that the missing percentage rises steadily before
hour 60, with an average missing percentage of 10 to 13.3. After
that, it increases dramatically, from 13.3 to 38.5. That is, the missing
percentage significantly increases in the latest time. Engineers say

that this is due to a time delay in data transmission from the node
measurement to the centralized database. Monitoring metrics in the
latest time contain additional information (e.g., high I/O utilization)
to help identify the failure nodes but is likely missing. Therefore,
data missing is a severe problem for the prediction models in the
online scenario.

Finding 3: Missing percentage dramatically increases
in the latest time due to data delay, making prediction
models more difficult to predict.

3.2 RQ2: Root Causes of Missing Data
Based on manual recording and the domain knowledge of experi-
enced engineers, missing data can be divided into four categories:
data delay, monitoring error, overload, and by design. Note that mea-
suring the percentages of these root causes is challenging, because
it is difficult to track all these missing data situations.
Data Delay. The failure prediction model consumes real-time data
in a centralized storage system to make the prediction. This data
is distributedly collected on each machine, then transmit to the
centralized storage system. The data may delay by minutes or even
hours due to the network issues, synchronizing strategy, etc [20].
Overload. Some nodes suffer from high I/O stress, making them
overload to collect monitoring metrics. The missing data caused by
overload indicates these nodes are unhealthy.
Monitoring Error. Some missing data is caused by the problems
of data collection or transmission in the monitoring system [33]. To
better understand monitoring errors, we further classify them into
the following four categories based on the error types: (i) Network
error : the system encounters a failed network connection, thus the
monitoring metrics are missing. (ii) File system error: the system
encounters a failed file system operation. (iii)Out of resource: system
resource, such as memory space, is used up. (iv) Untimely interrupt:
the monitoring system is interrupted by some unintended events.
By Design. This category of missing data is produced intention-
ally. Some features are not collected in a periodical way, such as
the EVENT data. These features are collected only when certain
events occur, indicating that the system has reached a specified
state. Because the prediction models need a fixed length of features
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as input. These features are also concatenated with the periodical
feature [22]. Therefore, we name that these data are missing in a
by design way.

4 AN EMPIRICAL EVALUATION OF MISSING
DATA INTERPOLATION

To solve the missing data problem for node failure prediction in
cloud systems, we conducted the first empirical study to investigate
how existing data interpolation techniques perform in this context. In
this section, we first introduce some typical missing data interpola-
tion techniques in Section 4.1, then illustrate our study design in
Section 4.2. Finally, we answer the following three research ques-
tions in Section 4.3, Section 4.4 and Section 4.5, respectively.

• RQ3: Does missing data affect node failure prediction?
• RQ4: How well do data interpolation approaches perform?
• RQ5: What is the impact of online data delay?

4.1 Data Interpolation Approaches
In the literature, many data interpolation techniques have been
discussed. We classified them into four categories according to the
technical aspects they use, i.e., Simple filling, numerical analysis,
statistical approach, and machine learning based approach. We
select one or two typical and widely used techniques from each
category as the representatives to evaluate the effectiveness of
missing data interpolation for node failure prediction.

• Simple filling
Zero filling (Z) [27]: Zero filling replaces the missing values by
zero. Because the normal value of monitoring metrics seldom
equals zero, filling in the missing one with zero may make it
different from the normal value and result in noise.
Forward filling (F) [1]: Forward filling is another simple filling
approach but considering the context information. It replaces the
missing value with the nearest forward non-empty value. Note
that the backward filling is not accepted in this scenario since
we cannot guarantee that the new arriving value is not empty.

• Numerical analysis
Linear interpolation (L) [30]: Linear interpolation is based on the
numerical analysis technique, which interpolates the missing
value by linear curve fitting.

• Statistical approach
Average value interpolation (A) [35]: Average value interpolation
is a statistical approach that calculates the average value of the
remaining normal values and fill the missing positions by the av-
erage value. This type of interpolation considers the distribution
of the original data source.
Gaussian distribution sampling interpolation (G) [29]: Gaussian
distribution sampling interpolation is based on the assumption
that the data follows the Gaussian distribution. The parameters
of the distribution are first estimated using the maximum like-
lihood estimation. Then it randomly chooses samples from this
distribution to fill the missing values.

• Machine learning based approach
KNN based interpolation (K) [7]: KNN based interpolation adopts
the KNN algorithm to find the closest similarity value to the miss-
ing data and use it to fill in the missing value. More specifically,

we first use the average interpolation to fill in the missing values
and then use all features of the node to build a KD-tree to get the
nearest neighbor node of the missing value. Finally, the missing
value is updated by the average value of the nearest k neighbors.
Deep learning based interpolation(D) [4]: Deep learning based
interpolation approaches, combined with self attention mecha-
nism [43], are powerful to impute time series data. We expect
that by making the failure prediction model aware of the missing
positions, the model will pay more attention to the actual values.
Therefore, we calculate all the missing places of the input moni-
toring metrics before they are filled, and use the positions as an
attention mask during training.

Specific design. According to Finding 2, we should treat the EVENT
data according to its physical characteristic because it is missing
by default. For the EVENT data, we use zero filling because zero
indicates that no event occurred at that moment. For the other time-
series features, We use the above seven approaches to interpolate
the missing data.
Interpolation dimensions. These interpolation approaches may
fill in the missing value based on the neighbor value given a dataset.
To identify the neighbor value for node monitoring metrics, two
dimensions, i.e., time and node, should be considered. Taking for-
ward filling for example, on one hand, we fill in the missing value
by its earlier time given a certain feature of the node using time
dimension interpolation by forward filling, denoted as F𝑡 . That is,
we use time dimension interpolation to account for temporal simi-
larity. On the other hand, we fill in the missing value by its nearest
node in the same cluster given a certain feature and timestamp in
node dimension interpolation by forward filling, denoted as F𝑛 . The
node dimension interpolation makes use of the spatial similarity.
For other approaches, such as linear interpolation, average value
interpolation, and Gaussian distribution sampling interpolation.
They can both fill the missing data in the time dimension and the
node dimension.

Note that zero filling and Deep learning based approach is inde-
pendent of dimension. Besides, KNN is only suitable for interpola-
tion on node dimension because it fills in the missing data with a
similar node. For the other approaches, we conduct experiments
on both time dimension and node dimension.

4.2 Study Design
Prediction Models. In this study, we present four widely-used and
state-of-the-art techniques for node failure prediction.

• RNN [40]: Recurrent Neural Network is a widely-used deep learn-
ing model designed specifically for sequential data. In addition,
it has been broadly employed for failure prediction.

• LSTM [44]: Long Short-Term Memory network is an extension
of RNN, which can typically handle situations where RNN fails.

• NTAM [21]: Equipped with an attention mechanism, the trans-
former neural network achieved state-of-the-art performance in
the node failure prediction task.

• TCNN [34]: Temporal Convolutional Neural Network is also
adopted in node failure prediction to extract the complex depen-
dencies of the monitoring metrics.
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Datasets. We utilize the node monitoring metrics dataset men-
tioned in Section 3. In particular, we divide the dataset into training
set, validation set, and test set by 6:1:1 according to the time order,
which is also adopted in previous studies [17]. We use grid search
to tune the parameters based on the validation set and report the
results of the model on the test set. We do not use cross-validation
to evaluate these prediction models, because using future data for
training is impractical [21].
Implementations.We put these deep learningmodels into practice
by following the instructions in the previous work. We use the
implementations supplied by PyTorch 1.10.0 [28], a scalable deep
learning framework. We use the identical parameter values as in
the previous works for the compared approaches. We utilize grid
search to determine the values of parameters based on the best
F1-score in the validation set if it is not explicitly indicated in the
previous work. We use the torch.nn module in PyTorch to build our
deep learning models. Specifically, we set the parameters of the
models as follows. If there’s no specific description, the parameters
are set as default.

• RNN : The RNN model uses a 2-layer bidirectional RNN module
with hidden_size=64. We also apply dropout layers with a dropout
rate equals to 0.25 to avoid over-fitting.

• LSTM: The LSTM model has almost the same structure as the
RNN model. We use a 2-layer bidirectional LSTM model instead
of the RNN module.

• NTAM : The NTAM model uses a one-layer Transformer encoder
of three heads with hidden dimensions equal to 64. Three FC
layers instead of one are used for prediction in order to avoid
information missing.

• TCNN : The TCNN model uses a convolutional network as the
backbone network structure.We use 2-dimensional convolutional
layers with kernel size 3 and Maxpooling layers with kernel size
2. We also use BatchNorm layers and ReLU activation layers.

We train the model with a learning rate equals to 1e-4. The
loss function is the cross Entropy loss [8], the optimizer is Adam
with weight decay equals 5e-6. Each model is trained 100 epochs
separately. Our study is conducted on Linux Ubuntu 20.04 LTS with
16 cores 32 threads AMD Epyc 7V12 3.9GHz and 256MB Cache, 220
GB memory, 64-bit operating system, and a single NVIDIA Tesla
T4 GPU accelerator.
Metrics. Models determine whether the node will fail based on the
features of node monitoring metrics in a time window. To evaluate
the performance of models, we employ the widely used metrics Pre-
cision, Recall, F1-score, and Balanced Accuracy. Nodes are labeled
as normal or failure based on maintenance records. True Positive
(TP) is how many nodes predicted failure are correct, and True Neg-
ative (TN) is the number of nodes correctly predicted normal. False
Positive (FP) refers to the number of nodes that predicted failure
but turned out to be normal. False Negative (FN) is the number of
nodes predicted normal but is actually failed.

• Precision: Precision measures how many actual failure nodes are
predicted as failure nodes correctly by the models.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Figure 3: Impact of Data Missing

• Recall: Recall represents the ability to predict failure nodes, i.e., how
many failure nodes can be predicted by the models.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +𝑇𝑁
• F1-score: F1-score is a metric that is the harmonic mean of preci-
sion and recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

• Balanced Accuracy: Balanced accuracy is especially useful when
the classes are imbalanced [16]. Balanced accuracy is calculated
as:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ( 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
)/2

• Efficiency: We also investigate the efficiency of the studied data in-
terpolation techniques, i.e., the interpolation time of the training
set and test set.

4.3 RQ3: Impact of Data Missing
To explore the performance of node failure prediction affected by
data missing, we conduct experiments under different missing rates.
We cannot obtain the oracle dataset without missing data, since the
original data from the online pipeline is partiallymissing. As a result,
for both the train and validation datasets, we mask the non-missing
locations at various missing rates (the missing percentage of the
original dataset is the basis) at random. To ensure the robustness,
we compare the experiments under several approaches, i.e., LSTM,
RNN, NTAM, and TCNN, and utilize forward filling method to fill
missing values.

Figure 3 shows the F1-score of multiple models with the data
mask rate from 0 to 90%, where zero mask rate corresponds to
the original data and 90% signifies that 90% of the original data is
masked. We can use masking to simulate different missing rates
and assess the model performance on the masked dataset. We can
draw some conclusions based on Figure 3. First, the performance
of the four techniques degrades substantially as the missing rate
rises. The F1-score of node failure prediction declines by 57.33%
at a missing rate of 20%, 49.66% at a missing rate of 40%, 35.83%
at a missing rate of 60%, and 20.53% at a missing rate of 80%. The
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Table 2: Performance comparison of various node failure prediction models with different interpolation approach, i.e., Zero,
Forward, Average, Linear, Gaussian, KNN, and Deep learning. The subscript 𝑡 (𝑛) denotes interpolation in the time (node)
dimension, and Avg𝑡 (Avg𝑛) is the average value of the time (node) dimension’s interpolation results.

Metric Model Z F𝑡 F𝑛 A𝑡 A𝑛 L𝑡 L𝑛 G𝑡 G𝑛 K𝑛 D Avg𝑡 Avg𝑛 Avg

F1-score

RNN 55.94 57.83 53.33 50.62 59.74 52.50 58.44 57.33 60.65 55.70 52.56 54.57 58.04 55.88
LSTM 64.67 64.56 69.57 62.89 66.67 64.56 66.67 66.67 69.14 67.88 71.43 64.67 68.01 66.79
NTAM 65.50 71.95 72.84 71.43 74.51 70.11 69.46 71.43 72.84 73.86 66.67 71.23 72.41 70.96
TCNN 65.79 71.26 73.37 65.82 70.66 69.62 72.05 68.57 72.83 50.63 70.73 68.82 72.23 68.30
Average 62.98 66.40 67.28 62.69 67.90 64.20 66.66 66.00 68.87 62.02 65.35 64.82 67.67 65.48

Precision

RNN 65.57 57.14 58.82 51.25 63.89 53.85 62.50 63.24 64.38 57.89 55.41 56.37 62.40 59.45
LSTM 63.53 67.11 67.09 62.50 70.27 67.11 65.12 70.27 70.00 67.47 69.77 66.75 68.12 67.29
NTAM 62.92 71.95 73.75 76.39 80.28 66.30 68.24 76.39 73.75 69.15 70.27 72.76 74.01 71.76
TCNN 71.43 67.39 71.26 68.42 69.41 72.37 73.42 64.52 69.23 52.63 70.73 68.18 70.83 68.26
Average 65.86 65.90 67.73 64.64 70.96 64.91 67.32 68.61 69.34 61.79 66.55 66.02 68.84 66.69

Recall

RNN 48.78 58.54 48.78 50.00 56.10 51.22 54.88 52.44 57.32 53.66 50.00 53.05 54.27 52.88
LSTM 65.85 62.20 64.63 60.98 63.41 62.20 68.29 63.41 68.29 68.29 73.17 62.20 66.16 65.52
NTAM 68.29 71.95 71.95 67.07 69.51 74.39 70.73 70.73 71.95 79.27 63.41 71.04 71.04 70.84
TCNN 60.98 75.61 75.61 63.41 71.95 67.07 67.07 73.17 76.83 48.78 70.73 69.82 72.87 68.29
Average 60.98 67.08 65.24 60.37 65.24 63.72 65.24 64.94 68.60 62.50 64.33 64.03 66.09 64.38

RNN 74.34 79.18 74.32 74.91 77.99 75.53 77.38 76.16 78.60 76.75 74.92 76.45 77.07 76.37

Balanced LSTM 82.85 81.04 82.26 80.42 81.66 81.04 84.08 81.66 84.09 84.08 86.52 81.04 83.02 82.70

Accuracy NTAM 84.07 85.92 85.93 83.50 84.72 87.12 85.30 83.50 85.93 89.57 81.66 85.01 85.47 85.20
TCNN 80.44 87.73 87.75 81.65 85.91 83.49 85.32 86.51 88.35 74.31 85.31 84.85 86.83 84.25
Average 80.43 83.47 82.57 80.12 82.57 81.80 83.02 81.96 84.24 81.18 82.10 81.84 83.10 82.13

results show that missing data reduces the accuracy of node failure
prediction.

Second, The impact of missing data on different models varies.
With an 80% missing rate, TCNN and RNN suffer the most, with
their F1-scores dropping to less than 5%. NTAM is more consistent,
with 40% F1-score at the 80% missing rate. NTAM also performs
substantially better than TCNN at the basis. This implies that a
superior approach, such as NTAM, is more data missing resistant.

Finding 4: Data missing has a negative impact on
the performance of the node failure prediction model,
which motivates us to explore solutions to handle it.

4.4 RQ4: Investigation of Interpolation
Approaches

4.4.1 Performance Comparison. To explore the performance of
different interpolation approaches illustrated in Section 4.1, we
conduct experiments on the subjects, and the results are shown in
Table 2. In this table, the last three rows present the average perfor-
mance metrics (i.e., F1-score, Precision, Recall, and Balanced Accu-
racy) of time dimension approaches, node dimension approaches,
and all approaches on the four models, respectively. Each column is
an interpolation approach, and the last column shows the average
performance of each model. The bold value for each metric in each
row refers to the largest one among these interpolation approaches.
According to Table 2, we have the following findings.

Model comparison. According to the last column of this table,
NTAM performs best among four approaches, with the average F1-
score of 70.96% for various interpolation approaches. RNN gets the
worst performance, with the average F1-score of 55.88%. Because
NTAM is based on the Transformer model, which is the state-of-
the-art sequential model adopted in various applications, such as
time series prediction, and natural language translation. It is more
effective in terms of the network structure than the traditional RNN
network. The LSTM model, on the other hand, has comparable
performance and is widely used in the industry application since it
is easy and reliable to apply [17].
No suitable interpolation approach for all models. According
to the table, Gaussian distribution sampling interpolation from
the node dimension, deep learning based interpolation, average
value filling from the node dimension, and forward filling from the
node dimension is the best interpolation algorithm for RNN, LSTM,
NTAM, and TCNN, respectively. Their F1-scores range from 50.62%
to 74.51%, demonstrating that different interpolation approaches
have distinct effects on model performance.
Node dimension interpolation is superior to time dimension.
The average F1-score for the node dimension is 67.67%, while that
for the time dimension is 64.82%. On average, node dimension in-
terpolation exceeds time dimension interpolation by about 3%. For
example, based on LSTM, node dimension forward value filling,
average value filling, linear interpolation approach, and Gaussian
distribution sampling interpolation exceeds the corresponding time
dimension based ones by 5.01%, 3.78%, 2.11%, and 2.47% in F1-score,
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respectively. One probable explanation is that node dimension tech-
niques take into account similarity among nodes (e.g., forward fill-
ing by filling in the missing value using the nearest node), as shown
in our Finding 1, and we will present case studies in Section 5. Sim-
ilarly, previous studies [21] have used neighborhood information
of hard drives to improve disk failure prediction performance.
Zero filling. Zero filling performs poorly when compared to other
interpolation algorithms, despite its ease of implementation. This
means that failing to use information from context timestamps or
neighbor nodes could result in poor results.
Learning based interpolation. The performance of KNN inter-
polation and deep learning based interpolation approaches are not
effective as expected. For example, the average F1-scores are 62.02%,
65.35%, below the average (65.79%). That further demonstrates the
effectiveness of these well-studied interpolation techniques is dis-
counted in our node failure context.
Different metrics may show different things. Although node
dimension interpolation performs better than time dimension inter-
polation in all metrics, i.e., F1-score, Precision, Recall, and Balanced
Accuracy, we find that the best interpolation approaches for each
performance metric in each row are not the same, because different
metrics reflect different aspect. Distinct service teams have different
metrics preferences. In a user interactive core service, for example,
recall is more important than precision since operators do not want
to overlook any potential node failure that could severely affect
the user experience. As a result, depending on the actual needs of
services, we can pick between metric and interpolation approaches.

Finding 5: No existing interpolation approach is suit-
able for all prediction models, however, the node di-
mension interpolation approaches outperform time di-
mension ones by 3% on average.

4.4.2 Efficiency Comparison. To explore the efficiency of these
interpolation approaches, we calculate the running time of these
approaches, including the training phase and online test phase, and
the results are shown in Table 3.

Table 3 shows the total interpolation time in the training set and
the online interpolation time for each node, because the training set
can be processed as a whole in the training phase, the online test
needs to make predictions for each node. From this table, we have
the following findings. First, for both the train set and the online
test, the zero interpolation approach run the fastest, indicating that
the strategy is simple and efficient. Second, the KNN interpolation
strategy in train sets consumes significantly more time than other
approaches. KNN is not suitable for imputation for missing data
in real practice due to the trade-off between performance and effi-
ciency. Third, the online test time of other approaches is less than
2 ms, making them appropriate for online use according to the
domain experts from the production team.

Finding 6: In the online prediction scenario, all inter-
polation approaches are efficient except KNN based
interpolation.
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Figure 4: The F1-score of varies interpolation approaches
with online data delay. The average with min/max bound-
ary of F1-score in different approaches (Forward, Average,
Linear, Gaussian, and KNN) is shown by the node and time
dimensions.

4.5 RQ5: Impact of Online Data Delay
Aswe described in Section 3.2, data delay is one of themajor reasons
for missing data in the node failure prediction scenario. Because
the monitoring metrics collected from each node are written to the
centralized database in an asynchronous way, it may take several
hours in practice. The delayed data, obviously, cannot be used
by real-time models, resulting in missing data. However, there
is delayed data when we collect data from a database for offline
training. As a result, the true rate of missing online data may be
higher than what we observe from the data.

To simulate the higher missing rate in an online context than
we observed from the historical dataset, we mask data from the
last several hours (from 0 to 10) in the test set without affecting
the missing rate of the training dataset. This experiment can also
evaluate how quickly a model can predict node failure in advance
without obtaining the future data. Using different interpolation
approaches, Figure 4 shows the F1-score of the LSTM model when
faced with different online data delays. Other models reach the
same conclusion, however, due to space constraints, we exclude
their results. The horizontal axis denotes the number of data delay
hours, and the vertical axis denotes the F1-score value. We have
the following observations according to this figure.

First, in comparison to no delay and one-hour delay, the F1-
score of all approaches is practically steady. After that, regardless
of whether interpolation approaches are used, the performance of
node failure prediction reduces significantly when more online data
is delayed, demonstrating once again that the data missing issue
hurts the performance of node failure prediction.

Second, node dimension interpolation approaches outperform
time dimension interpolation approaches, as we see in Finding 5.
The deep learning based interpolation technique, on the other hand,
outperforms all other data interpolation approaches. One possible
explanation is that the deep learning based interpolation technique
uses self-attention to examine the node and temporal information
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Table 3: Efficiency comparison of different interpolation approaches

Method Zero F𝑡 F𝑛 A𝑡 A𝑛 L𝑡 L𝑛 G𝑡 G𝑛 K𝑛 D

Total Training Set (s) 3.70 4.34 8.24 30.94 19.09 73.10 51.13 100.40 31.93 62930.00 1648.48

Online Test / Node (ms) 0.03 0.02 0.05 0.21 0.06 0.7 0.09 1.28 0.2 79.37 0.78

of missing data, which is appropriate in a data delay scenario and
valuable for early prediction.

Finding 7:Deep learning based interpolation approach
performs the best in the online data delay scenario,
highlighting its capabilities for early prediction.

5 DISCUSSION
In this section, we present case studies of the missing data. Next,
we discuss insights for handling missing data in node failure pre-
diction. Then, we summarize lessons learned from the real-world
deployment of the node failure prediction solution in Microsoft 365
Cloud Systems. Finally, we discuss threats to validity.

5.1 Case studies
To illustrate the effectiveness of node dimensions interpolation
approaches, we present several cases in our datasets. Figure 5 shows
one feature of seven sampled nodes across the timeline. In this
figure, the blue bar is the position of the missing value. The ground
truth of node status, i.e., failure or normal is presented on the right.

From this figure, the missing data of Node 1 and Node 2 are
complementary to one other over time, and they both belong to
the failure nodes. Nodes 3 and 4, as well as Nodes 5, 6, and 7, are
normal nodes and exhibit the same behavior. As a result, using the
neighborhood node value to interpolate the missing value makes
sense. Furthermore, having a stronger interpolation technique will
help with failure prediction.

5.2 Insights in Handling Missing Data
Temporal and spatial characteristic of data in Cloud. Cloud
systems, with computing resources distributed all over the world,
generate spatial-temporal data by nature. Different from existing
data missing handling research, our empirical study shows the
effect of data sufficiency in both temporal and spatial (node) di-
mensions, and the latter may be more important to node failure
prediction. This finding also conforms to the study in disk failure
prediction [21]. More specifically, NTAM makes use of node neigh-
borhood knowledge by attention mechanism in the transformer
model. Therefore, we need to pay attention to the characteristic of
data in the spatial dimension when developing data-driven solu-
tions for cloud systems.
Generality of the study. Missing data is a severe problem in
the real world, not only in the scenario of node failure prediction.
For example, we analyze the BackBlaze dataset2 and the Alibaba

2https://www.backblaze.com/b2/hard-drive-test-data.html

Figure 5: Data missing case studies. The Blue bar indicates
that the value is missing at that time.

Cloud dataset3. The S.M.A.R.T.4 feature value for each timestamp
is provided in these datasets, and missing data is detected by the
empty value of the timestamp. BackBlaze is a published hard driver
dataset from a real-world cloud storage provider, which has about
1.01% failure rate of hard drivers according to their 2021 report5.
Analysis of about 500 nodes over one month suggests that the
missing rate (NaN / total value) is 74.4%. Alibaba Cloud dataset is
served as PAKDD2020 Alibaba AIOps Competition, which provides
S.M.A.R.T. data from 200 thousand hard disk drives over one year
in Alibaba Cloud’s data centers. The total missing rate is about
91%. These high data missing rates indicate that missing data is
a general challenge for node failure prediction in the real world.
We believe our findings may also guide these scenarios in handling
missing data because they have the same temporal and spatial
characteristics. In future work, we will address the missing data
problem for the general failure prediction task for software systems.

5.3 Lessons Learned
Solving data missing from source. Section 4.4 shows the feasibil-
ity of implementing interpolation methods to handle data missing.
However, these interpolation methods still can not fully solve the
missing problem, since true data missed is hard to restore com-
pletely correctly. The most straightforward solution is to solve data
missing from the source. In other words, ensure the data collec-
tion process. As illustrated in Section 3.2, reasons leading to data
missing in node failure prediction can be mainly divided into four
categories: data delay,monitoring error, overload, and by design. The
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=70251
4https://en.wikipedia.org/wiki/S.M.A.R.T.
5https://www.backblaze.com/blog/backblaze-drive-stats-for-2021/
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root cause for missing data in other scenarios is also similar to one
in node failure prediction. Although it is hard to completely solve
the four issues to obtain data without missing, it is supposed to
optimize the storage system, keep more stable networking, ensure
more reasonable source allocation, and design a more effective data
format to alleviate data missing as much as possible. We believe it
is the best solution to handle data missing in real practice.
Missing maybe also an information. Instead of alleviating the
data missing issue, another thought is utilizing data missing for
node failure prediction. According to our investigation, a high miss-
ing rate may be a strong signal to indicate nodes’ failure. More
specifically, the average of the top 0.1% missing rate from normal
nodes and failed nodes are 77.82% and 87.03%, respectively. Because
node failure might result in a large amount of missing data. For
example, a node’s I/O may be overloaded, preventing it from col-
lecting monitoring metrics and just reporting EVENT data. We
believe that the missing distribution of each node can be treated
as additional information for failure prediction. In addition, sud-
denly continuous data missing may also indicate a failure. In other
scenarios involved with data missing, we can also correlate data
property with the missing issue, and explore the chance to guide
corresponding downstream tasks via missing data itself.

5.4 Threats to Validity
Internal Threats. The implementations of our method and the
compared approaches pose an internal threat to validity. To reduce
this threat, we employ established tool implementations for the dif-
ferent deep learning models used in our work, which are described
in Section 4. Two authors also double-checked the code.
External Threats. The subjects are the main external threats to
validity. We collect millions of nodes’ monitoring metrics from the
Microsoft 365 for this research. These nodes come in a variety of
models and from different manufacturers, making them diverse.
Nonetheless, the subjects utilized may not be representative of
node failures in other companies. We will look into additional node
failures from other companies in the future.
Construct Threats. Construct threats are mainly parameters and
labeled data. For the parameters in the compared approaches, we
set them using the values given in the previous work or grid search.
We will further investigate the impact of parameters in the future.
The failure nodes were labeled by failure records. Despite the fact
that these data may contain noise, we feel Microsoft 365’s failure
management is mature and attentive. Thus, this threat is negligible.

6 RELATEDWORK
Failure prediction. Many approaches for predicting node failure,
similar to hard drive disk failure prediction, have been proposed in
recent years. Machine learning or deep learning based techniques
are commonly used because node failure prediction may be consid-
ered as a binary classification problem [19]. Machine learning based
approaches for node failure prediction, such as support vector ma-
chines [44] and tree based models [3, 15], use monitoring metrics
collected in a time window to predict whether the node will fail in
the coming time window. These machine learning approaches, on
the other hand, poorly handle the temporal information of nodes

[34]. Deep learning approaches such as the recurrent neural net-
work (RNN) [40], long short-term memory (LSTM) [17], and tem-
poral convolutional neural network (TCNN) [34] can capture the
temporal information and outperform classical machine learning
based approaches. Our work is orthogonal to previous failure pre-
diction approaches, since we aim to understand the missing data
issue of node failure prediction.
Missing data interpolation. Besides the seven studied approaches
in our work, there are many missing data interpolation methods
[32]. For example, 3-D autoregressive models and Markov random
fields are used to interpolate missing data in image sequences [14].
A Singular Value Decomposition (SVD) based method, weighted
K-nearest neighbors, and row average are evaluated for DNA mi-
croarrays missing interpolation [35]. Low-rank recovery and semi-
supervised regression are adopted for software effort estimation
[12], since the effort data missing occurs in real-world data collec-
tion. Different from the above-mentioned related work, our work
conducts an empirical study to evaluate the effectiveness of typical
data interpolation approaches in cloud node failure prediction.
Missing data in the software systems. Over the years, many
missing data handling approaches have been proposed. For example,
query-oriented data cleaning with Oracles [2] can add a missing
answer. Y! [39] diagnoses missing events in distributed systems
with negative provenance. Rex [26] and BDA [31] detect missing
files in the configuration using correlated change analysis. GRAPE
[42] proposes a general framework for feature imputation and label
prediction in the presence of missing data. Missing data is also
a significant issue in general software analytics, since data is the
foundation of the data-driven approach. Previous software analytics
studies [13] deal with missing data in software defect prediction. An
automatic missing data recovery algorithm called ReLink [38] can
help construct quality defect datasets for follow-up research such
as software defect prediction and software maintenance. Unlike the
above work, we use industry data to conduct an empirical study
of missing data in the failure prediction scenario and investigate
existing interpolation methods for dealing with missing data.

7 CONCLUSION
Node failure prediction is an important task in cloud systems for
ensuring system reliability. When applying node failure prediction
in practice, we notice a problem with the missing data of node
monitoring metrics. We conduct a large-scale real-world empirical
study on millions of nodes in Microsoft to better understand the
missing data. From this study, we find that missing data is a severe
problem, especially in the online setting. It may result in poor node
failure prediction performance. We have seven interesting findings,
such as node dimension interpolation approaches outperform time
dimension ones, and deep learning based interpolation is the best
for early prediction. Our findings could help tackle the missing
data problem in cloud node failure prediction and other data-driven
software engineering scenarios.
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