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ABSTRACT
Logs are crucial to the management and maintenance of software
systems. In recent years, log analysis research has achieved notable
progress on various topics such as log parsing and log-based anom-
aly detection. However, the real voices from front-line practitioners
are seldom heard. For example, what are the pain points of log
analysis in practice? In this work, we conduct a comprehensive
survey study on log analysis at Microsoft. We collected feedback
from 105 employees through a questionnaire of 13 questions and
individual interviews with 12 employees. We summarize the format,
scenario, method, tool, and pain points of log analysis. Additionally,
by comparing the industrial practices with academic research, we
discuss the gaps between academia and industry, and future oppor-
tunities on log analysis with four inspiring findings. Particularly,
we observe a huge gap exists between log anomaly detection re-
search and failure alerting practices regarding the goal, technique,
efficiency, etc. Moreover, data-driven log parsing, which has been
widely studied in recent research, can be alternatively achieved
by simply logging template IDs during software development. We
hope this paper could uncover the real needs of industrial practi-
tioners and the unnoticed yet significant gap between industry and
academia, and inspire interesting future directions that converge
efforts from both sides.
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1 INTRODUCTION
Logs, as a well-acknowledged cornerstone for system observabil-
ity [36, 38], record important runtime information. In industry, logs
have been widely applied in the management and maintenance
of software systems to ensure their reliability and availability, es-
pecially in large-scale systems. Moreover, log plays a vital role
in security and auditing [13], workflow analysis [20], and mak-
ing business decisions [3]. Nowadays, most software companies
have strong demands and have devoted many efforts to managing
logs, which also fuels the rise of the log management market with
companies such as Splunk [35] and Datadog [10].

Considering the huge volume and great complexity of log data
in large-scale systems, automated log analysis research aims to
relieve the unaffordable manual efforts of log inspection with more
intelligent approaches. Throughout the years, automated log anal-
ysis has also attracted a lot of attention from the research com-
munity [13, 39, 44, 49], especially with the popularization of ma-
chine learning and deep learning. As reviewed by He et al. [16],
over 100 log research studies were presented in top conferences or
journals from 2015 to 2020, where topics include logging [21], log
compression [25], log parsing [49], anomaly detection [39], failure
prediction[9], diagnosis [17, 45], etc.

Although log analysis has been extensively studied with growing
prosperity, the real voices from front-line practitioners are seldom
heard. For example, what kind of logs do they analyze? What tools
do they currently use and expect to use in the future? What are the
pain points during log analysis? etc. With these questions in mind,
we conducted a comprehensive survey study on log analysis by
empirically inquiring and interviewing employees at Microsoft, one
of the largest software companies in the world. Additionally, based
on our years of both industrial and academic experience, several
follow-up questions were raised: What are the current practices of
log analysis in the industry? Do these practices differ from academic
research? What are the opportunities?

In this work, we first collected feedback from 105 employees in
Microsoft through a questionnaire of 13 questions. We followed the
guideline [31] and recent practices [1, 8] to design and distribute
the survey. The survey participants come from a variety of products
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in Microsoft, including complex cloud systems like Azure, produc-
tivity applications like Microsoft 365 (M365), operating systems like
Windows, search engines like Bing, social media like LinkedIn, etc.
Moreover, the participants are of different roles, such as software
developer and site reliability engineer. To unearth more details and
hidden insights behind the survey responses, we further invited 12
participants to an individual interview. It took around four months
to collect the feedback through the questionnaire and interview.

We organized and summarized the survey responses by the log
format, log usage scenario, analysis method and tool, and challenges
of log analysis. These results uncover the first-hand experience
of log practitioners in real-world production environments. For
example, engineers in Microsoft mostly use structured and semi-
structured logs instead of unstructured logs. Moreover, we present
six practical challenges worth further exploring, for example, too
many logs and missing logs, hard to find failure-related logs and
correlating logs from various sources is challenging. These results
provide an industrial view of what engineers care about most in log
analysis, which may provide insights for future research studies.

We then present a brief review of log analysis research [16]
in recent years, which consists of logging, log parsing, anomaly
detection, and failure diagnosis. For each topic, we discussed the
industrial practices, presented the gap between academic and in-
dustrial studies, and shared the opportunities for future research.
We further concluded four inspiring findings from the discussion,
for instance, “log parsing is generally achieved by lightweight instru-
mentation, while the after-the-fact data-driven log parsing are used in
some restricted scenarios such as third-party libraries and “a huge gap
exists between anomaly detection in academia and failure alerting in
the industry regarding the goal, techniques, interpretability, etc.”

In recent years, there have been a few empirical survey studies [3,
40, 47] on log analysis in the industry. Barik et al. [3] presented
a study on logging to understand the organizational implications
and challenges of various roles at Microsoft. Yang et al. [40] studied
how developers analyze logs in embedded software engineering
via interviews. Unlike them, we focus on the current practices,
challenges, gaps and opportunities of log analysis in a large software
company. Additionally, Zhao et al. [47] conducted an empirical
study on log anomaly detection, while our work considers the
broader log analysis (such as logging) life cycle.

We summarize our main contributions as follows:
• We present a comprehensive survey study on log analysis at Mi-
crosoft and summarize the survey responses from perspectives
including format, scenario, pain points, etc.

• To our best knowledge, we are the first to summarize the gaps
between academia and industry and present some promising
opportunities in log analysis domain.

We hope the experience of front-line engineers can help re-
searchers better understand the industrial needs. Besides, we hope
the unnoticed yet significant gap between industry and academia
can inspire interesting future directions that converge both sides
efforts and benefit the log analysis community.

2 BACKGROUND
In this section, we brief the background of logs, i.e., typical log
formats and how logs are usually managed in the industry.

Structured 
Log

Timestamp Cluster Node RackId API Version

2021-01-01 02:51:26 C01 N01 2_17 GetMessage v1

2021-01-01 02:51:28 C01 N03 2_18 GetMessage v2

Unstructured 
Log

Message

2021-01-01 02:51:26 COM Receive request 3754984 through GetMessage 

2021-01-01 02:51:28 COM Executing the request takes 0.47356277 seconds

Semi-Structured 
Log

Timestamp Cluster Node Message

2021-01-01 02:51:26 C01 N01 {“Version”: “v1”, “Message”: Exception 
when processing request 89953}

2021-01-01 02:51:26 C01 N03 {“Version”: “v2”, “Message”: Exception 
when processing request 46352}

Figure 1: Samples of structured, unstructured and semi-
structured logs.

2.1 Log and Its Format
Recent years have witnessed the increasing scale and complexity of
software systems, which leads to their more powerful functions and
broader adoption while, at the same time, inevitably making them
hard to manage and maintain. To tackle the challenge, engineers
resort to enhancing the system observability [36, 38] with logs.
Logs capture various system run-time information such as events,
transactions, and messages. A typical piece of log is an immutable,
time-stamped record that happened over time (e.g., software update
events or received messages). Logs are usually generated when a
system executes the corresponding logging code snippets. A sys-
tem with mature logs essentially facilitates the system behavior
understanding, health monitoring, failure diagnosis, etc.

Generally, there are three typical log formats, i.e., structured,
semi-structured and unstructured logs. These logs share the same
components: a timestamp and a payload content. We present an
example of each log format in Figure 1 with details as follows:

(1) Unstructured Log is a common log type written in free-form
plain text. It is human-readable and easy-to-instrument.

(2) Structured Log is generated by following a predetermined log
format (e.g., key-value pairs). Structured logs are machine-
friendly due to the ease of storage and statistical analyses.

(3) Semi-structured Log demonstrates a mixture of both struc-
tured and unstructured characteristics.

Structured logs usually keep a consistent format within the log
data and are easy to manage. Specifically, the well-structured for-
mat allows easy storing, indexing, searching and aggregation in
a relational database. However, the structured format falls short
in recording heterogeneous but correlated events in a single file
or database. It is because one predetermined log format may not
fit all log events from various system components. An alternative
is to use unstructured (or semi-structured logs), whose free-form
format allows the ingestion of different log events to the same place.
However, the unstructured log data achieves its high flexibility at
the expense of the ease of machine processing. The characteristic of
free-form text becomes a major obstacle for efficient query and anal-
ysis on unstructured or semi-structured logs. For instance, to count
how often an API version appears in unstructured logs, engineers
need to design a complex query with ad-hoc regular expressions to
extract the desired information. Clearly, the manual process takes
lots of time and effort and is not scalable.
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2.2 Log Management System
This section briefly introduces how a log management system is
commonly designed and implemented in practice, which is seldom
covered in the literature. Usually, logs are managed through several
phases: collection, ingestion, pre-processing, and consumption.

Log collection. Logs are collected from various sources, including
the software application, infrastructure, host OS, etc. To enable the
emission of the log data, engineers write logging statements during
development by leveraging various instrumentation frameworks,
usually in the form of SDK (e.g., log4j) or API. The framework is
designed to run alongside the program being monitored and gather
the log data automatically.

Log ingestion. The gathered data is then sent to intermediate
storage outside the program. An agent is deployed to listen on the
storage and send the collected data to an ingestion component. The
logs are then persisted into durable storage systems for indexing
and querying. The storage systems usually adopt cost-efficient and
reliable storage solutions (e.g., distributed storage with replication)
and may vary by the log format and usage. For instance, the log
data for monitoring usually requires low latency, and the storage
should allow rapid ingestion and query of log data.

Log pre-processing. Predefined pre-processing tasks are triggered
after the log data arrives in storage, including content extraction,
removing personal-identifiable information, reformatting, merging
multiple data sources, etc. Due to the enormous volume of log data
in Microsoft, pre-processing is often conducted on a Hadoop-like
big data platform. Since there are many downstream log related
workloads, these pre-processing tasks usually require sophisticated
scheduling to accomplish specific SLAs, e.g., within the time limit.

Log consumption. Logs are consumed in various downstream
scenarios, e.g., monitoring and diagnosis. For monitoring, a prompt
alerting service is set up to detect anomalies based on near-real-
time log data. Once detected, the alerting service will escalate the
anomaly as an alert and notify On-Call engineers to investigate.
Besides the monitoring, log data are also queried for on-demand
diagnosis purposes; for example, log queries like keyword search
or time-range filtering are often performed when a failure happens.

3 SURVEY METHOD
To investigate how logs are analyzed in practice, we surveyed 105
employees from different organizations in Microsoft. These orga-
nizations cover very diverse products, consisting of cloud systems
with thousands of services like Azure, productivity applications like
M365, operation systems like Windows, search engines like Bing,
social media like LinkedIn, etc. These products represent a majority
of software types in today’s software market. To systematically
conduct the survey, we follow the guideline proposed by Punter et
al. [31] and survey practices presented in recent studies [1, 8].

Survey Design & Delivery. Unlike the recent study [40] which
only took one-to-one interviews, we used a hybrid methodology to
collect feedback, including a survey questionnaire containing 13
questions and a follow-up one-hour interview. We used Microsoft
Forms[29] to design our survey questionnaire, collect and analyze
feedback. We sent the questionnaire link to our participants via
email. The invitation email first illustrates the purpose of the survey,
followed by asking the email recipient to take the survey via clicking

the link. The survey contains three sections: 1) The introduction
shows a brief overview of the survey, an estimated completion
time (10 minutes) and a consent form for ethics reasons. 2) The
survey questions (Q1 - Q11 in Table 1) on log analysis. 3) Two
additional questions (Q12 - Q13, not listed in Table 1): The Q12 is
about whether the participant is willing to attend the follow-up
interview, and its answers are Yes, No and Maybe. The Q13 asks for
participants’ suggestions to improve the survey question design.
All questions are not optional except for Q13.

For the follow-up one-hour interview, we invited those partici-
pants who chose the answers of Yes and Maybe to attend a meeting
via an internal communication tool. Considering the time zone
difference, we scheduled each meeting after several rounds of email
interactions. In the interview, we asked the interviewee to provide
additional context to their response and made an in-depth discus-
sion on it. The entire interview process is conducted interactively
with questions based on the interviewee’s response. We recorded
the entire interview (e.g., screen sharing, video, auto-script), then
replayed and analyzed the recorded video post the interview.

Table 1: A list of survey questions (excluding Q12 and Q13).

ID Question

Ro
le Q1 What is your profession (e.g., software engineer, data scientist)?

Q2 What is your year of experience in analyzing logs?

U
sa
ge Q3 Which log format do you analyze most frequently?

Q4 Which scenarios do you usually use logs for?
Q5 How many hours do you spend analyzing logs in an incident?

To
ol

Q6 How do you usually analyze logs?
Q7 What existing tools do you use to analyze logs?
Q8 What future tools do you expect to utilize to analyze logs?

Ch
al
le
ng

es Q9 How often do you analyze logs that you are unfamiliar with?

Q10 Failure-related logs may be overwhelmed by too many logs and
hard to identify. To what extent do you agree or disagree?

Q11 What are the pain points/challenges when analyzing logs?

Survey Questions Design. To start, we designed the first ver-
sion of survey questions based on our years of industrial experience
and observations. We then performed a pilot study to evaluate the
survey questions by inviting 10 experienced developers to provide
feedback. After receiving the feedback, we revise the wording of
both questions and answers (if the question is closed-ended). For
questions that are not easy to understand, we provided illustrat-
ing examples to demonstrate the concepts. For example, in Q3, we
attached the example in Figure 1 under the question. After this
process, we finalized the survey questions.

These questions include the role of the survey participants (Q1,
Q2), the log analysis usage scenario (Q3 - Q6), the toolsets (Q6 -
Q8) and challenges of analyzing logs in practice (Q9 - Q11), and
the two additional questions (Q12, Q13) mentioned above. Among
these questions, Q1 - Q5 and Q9 - Q10 are closed-ended questions
whose answers are concluded based on our domain experience and
feedback from pilot participants. For the closed-ended questions,
to ensure the comprehensiveness of the answers, we provide an
additional option named "Others". Participants can enter a free-text
answer if their answer is not listed in the predefined answers. Q4
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is a question with multiple-choice answers. Apart from these ques-
tions, the remaining questions are open-ended, and participants
can enter a free text. It is worth noting that Q10 was designed
after we collected some feedback from the pilot participants. We
realized that Q10 might be a common question for most engineers
and would like to know to what extent they agree on it.

Recruiting Participants.We recruited the survey participants
in various ways after the pilot run. Firstly, we contacted several
team leaders from different organizations at Microsoft with a sys-
tematic sampling approach [31]. We then asked them to distribute
the survey link to their team members. Secondly, we adopt the
self-recruited invitation, a type of non-systematic sampling ap-
proach [31], to recruit participants that might be interested in the
survey topic. In detail, we posted the survey invitation to several
internal communities (i.e., an interest group for employees from
different organizations and teams to discuss a specific topic, such
as telemetry, reliability engineering, AIOps) that contains hundreds
or thousands of employees. The advantage is that those people
are attracted by similar topics as the survey and may be eager to
respond. At last, we adopted the snowball sampling method, where
we asked the participants to forward the invitation email to their col-
leagues. In total, we sent more than 2,000 survey links and received
105 survey responses from various organizations including Azure,
M365, Windows, Bing, LinkedIn, etc. For the follow-up interview, 12
participants attended the one-hour interview meeting.

Organizing Survey Results.We statistically summarized the
answers for closed-ended questions by counting how many par-
ticipants chose each answer (e.g., Table 2) or plotting the distribu-
tion (e.g., Figure 3) if it is not a multi-choice question. For open-
ended questions, we adopted the widely-adopted open coding tech-
niques [6] to summarize the results. For each question, the first two
authors independently compiled a list of answer categories in two
steps: first, each author iterated the responses and assigned rough
labels; second, each author refined the labels by going through
the responses again. Then, the two authors discussed their cate-
gory lists, compiled the final list of answer categories and jointly
relabeled each response. At last, for each question, the third and
fourth authors rechecked the labels to ensure the correctness. We
present these results by either showing the counts (e.g., Table 3) or
statistical distributions. For the one-hour interview, the first two
authors separately compiled the scripts for each recorded video
and converged the scripts together with the fourth author.

Ethics. Before sending out the survey, we followed a strict com-
pliance assessment process at Microsoft to ensure the privacy and
security of the collected data. Additionally, similar to a recent
study [8], we provided a consent form outlining the study pur-
pose, scope, data usage, and retention policies to all the survey
participants at the beginning of the survey questionnaire.

4 SURVEY RESULTS
This section first shows the distribution of survey participants (Q1-
Q2) and the survey results in Section 4.1 (Q3-Q10). Then, Section 4.2
summarizes the pain points and challenges in log analysis (Q11).
For Q12-Q13, we mainly used the answers to either ask for the
follow-up interview or improve the question design, thereby not
explicitly presenting the results.

Table 2: Role (left) and year of experience (right) for survey
participants (SRE denotes site reliability engineer)

Role #Resp
Support Engineer & SRE 37
Software Developer 46
Data Scientist 12
Program Manager 5
Others 5

Year #Resp
1 − 3 years 28
3 − 5 years 21
5 − 7 years 13
> 7 years 43

0

25

50

75

100

Alert Triage Mitigation RCA Audit and Report

43

93

5761
54

(a) Different log format (b) Different scenarios of log analysis

34%

25%

41%

Structured Log
Unstructured Log
Semi-Structured Log

Figure 2: Distribution of log formats and analysis scenarios.

Q1 & Q2: Role and experience of participants. As shown in Table 2
(left), the survey participants serve a variety of roles at Microsoft,
including support engineer, site reliability engineer (SRE), soft-
ware developers, data scientist, program manager, and others (e.g.,
consultant). Support engineers process customer support requests,
while SREs mainly resolve live site incidents, and they work with
logs frequently. Software developers mostly analyze logs during
the on-call. Support engineers, SREs, and software developers ac-
count for a majority of our survey participants (around 79%). Data
scientists, program managers and others also analyze logs in their
scenarios, such as extracting diagnosis insights from logs and track-
ing the feature growth. Table 2 (right) presents the log analysis
experience of engineers. About 73% of engineers have more than 3
years of experience in analyzing logs, and about 42% of them are
very experienced engineers (i.e., with more than 7 years of experi-
ence). To conclude, the participants cover diverse roles in Microsoft,
and most of them are experienced in log analysis.

4.1 General Findings
We present the results of questions as follows, including log usage
(Q3-Q5), log tool support (Q6-Q8), and log challenges (Q9-Q10).

4.1.1 Log Usage.

Q3: Log format. As introduced in Section 2.1 and presented in
Figure 1, we identified three log formats, i.e., structured, semi-
structured and unstructured logs. The distribution of log format
usage is presented in Figure 2 (a). Structured and semi-structured
logs are the most common (41% and 34% respectively) log types
used by the participants, while unstructured logs (25%) are less
used. Note that we only asked for the “most frequent” log format,
while engineers may process logs of all three formats in practice.

Q4: Log analysis scenario. Engineers usually analyze logs for
various purposes in different scenarios, such as software mainte-
nance, auditing and reporting. To facilitate software maintenance,
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(a) Time spent on log analysis (b) Current log analysis method

2%

43%

40%

15%

Read logs line by line
Statistical analysis 
Keyword search
Other

Figure 3: Distribution of log analysis time consumption and
current log analysis methods.

in Microsoft, we adopt a multi-phase procedure to process fail-
ures (often referred to as incidents [5]), consisting of alert, triage,
mitigation and root cause analysis phases. In the alert phase, an
alert would be triggered if there is an anomaly pattern in the time
series of monitoring metrics. The alert then becomes an incident
ticket that notifies On-Call engineers to engage immediately. In
the triage phase, by inspecting logs or other related information, if
engineers in team A find team B’s service causes the incident of
team A’s service, they will transfer it to team B. In the mitigation
phase, engineers have to quickly stop the incident from impacting
customers by taking actions like the reboot. Although engineers
mainly mitigate the incident by domain expertise, sometimes they
need to analyze logs to decide the mitigation action. In the root
cause analysis (RCA) phase, engineers will investigate the reasons
behind the incident by inspecting logs and other information such
as core dump and source code. Once the root cause is identified,
engineers from the responsible team can fix the problem.

In terms of log analysis scenarios defined above, Figure 2 (b)
illustrates the number of participants that chose each scenario.
Note that the participants are allowed to select multiple scenarios
simultaneously. It aligns with our expectation that RCA is the most
common scenario of log analysis, as confirmed by a remarkably
high number (93). Around half of the participants analyzed logs in
alert, triage and mitigation scenarios with comparable numbers (50
∼ 60). Logs are also widely leveraged in audit and report. In audit,
admins or auditors use logs to examine suspicious activities to
assure security and prove compliance. In report, log data supports
making business decisions such as product growth and feature
development. In our study, around 40% of the participants selected
audit and report as their log analysis scenario, demonstrating the
strong potential in these areas.

Q5: Log analysis time. The time spent analyzing logs reflects the
difficulty of existing log analysis and potentially indicates the space
for improvement if we adopt some automation tools. As Figure 3
(a) depicts, about 65% of participants spend more than an hour
on log analysis for an incident. Note that most participants are
very experienced engineers (shown in Section 3). Hence, it is a
heavy workload to analyze logs, which desires more automated log
analysis tools to relieve the manual efforts.

4.1.2 Log Tool Support.

Q6: Log analysis method. Figure 3 (b) presents the survey results
regarding how engineers currently analyze logs. We observed that
a large number of engineers (43%) search keywords to find related

(a) Current in-use log analysis tools

17%

46%

16%

21%

Data Analysis Editors Database Query Dedicated Tools

(b) Expected future log analysis tools
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Structuralization
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Infrastructure

1211
7
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12

7

Figure 4: Distribution of current in-use and expected future
log analysis tools.

logs. Many participants (40%) use statistical analysis (e.g., filter,
count, sum, trend) to understand logs. In essence, both keyword
search and statistical analysis summarize key insights from a vast
volume of logs. Nevertheless, a small portion of (15%) participants
read logs line by line to understand log content. Since some partic-
ipants analyze logs by combining two or three of the mentioned
methods (such as “statistical analysis on top of keyword search”), we
add the count to each method separately. Also, a participant ana-
lyzes logs by “typical ML tools” and another one did not share the
specific method as it “depends on the log file and problem symptom”
(denoted in “Other”). We can find that current-in-use log analysis
methods are relatively simple, leaving spaces for more advanced
yet easy-to-deploy tools to improve the analysis efficiency.

Q7: Log analysis tools. When applying the above-mentioned
methods to analyze logs, participants usually leverage some tools.
As depicted in Figure 4 (a), we categorized these tools into different
types, including data analysis tools, editors, database queries, and
dedicated tools. Around half of the participants analyze logs by
writing various queries in our internal database products, includ-
ing relational databases such as Azure Data Explorer and big data
platforms (namely, a Hadoop-like platform) for log data of a large
volume, etc. Additionally, some participants use data analysis tools
such as Python and Spark scripts and other internal/external data
analytics tools. The two remaining categories are text editors and
dedicated tools. For the former, engineers use popular IDEs such as
VS Code and Excel to load logs; for the latter, some dedicated tools
are often used. For example, Windows Event Viewer and Process
Monitor are often used to analyze Windows logs.

Q8: Future log analysis tools. Although plenty of log analysis
tools are already in use, participants express their expectations
on future tools. The summarized results are presented in Figure 4
(b). Most participants expected tools that could automatically help
them analyze logs. For example, it would be beneficial to have a
“super AI” that provides “automated insights” based on the given
logs. They also want the tool to “point out the failure indicating logs”
with interpretation and “highlight log importance”. In addition, tools
are expected to merge logs from different sources into one place
for exploration. Participants also want a good visualization tool to
better “understand logs and the behind workflow”. To retrieve logs
from databases, a tool that can automatically generate the query
would be useful. Moreover, engineers often need to structurize
the unstructured log data into a structured format, demanding an
off-the-shelf tool to achieve so automatically. There are also some



ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore S.He, X.Zhang, P.He, Y.Xu, L.Li, Y.Kang, M.Ma, Y.Wei, Y.Dang, S.Rajmohan, Q.Lin

8%

34%

42%

13%

3%
Never
Seldom
Sometimes
Often
Always

(a) Frequency of analyzing 
unfamiliar log

2%
5%

16%

38%

39%

Strongly agree
Somewhat agree
Neutral
Somewhat disagree
Strongly disagree

(b) Level of agreement on “failure-
related logs are often overwhelmed” 

Figure 5: Frequency of analyzing unfamiliar logs (a) and
level of agreement on overwhelmed failure logs (b).

expectations on the overall log infrastructure (e.g., collaborative
log data exploration and better log organization). To summarize,
participants have great expectations for the future log analysis
tools, which we hope could attract more attention from the research
community to contribute more.

4.1.3 Log Challenges. Here we only present the result of Q9-Q10
and leave the results of Q11 and the interview in Section 4.2.

Q9: Analyzing unfamiliar logs. Intuitively, it is easy to analyze
logs for an engineer if she is the author of the corresponding logging
statements. However, the industry embraces cross-team collabora-
tions, and a practical challenge is dealing with unfamiliar logs (e.g.,
from other teams or components). Figure 5 (a) shows how frequent
the participant processes unfamiliar logs. It is observed that a large
portion (i.e., 34% of “often” and 8% of “always”) of participants fre-
quently work on unfamiliar logs, while only 16% of participants
seldom or even never work on unfamiliar logs. Interestingly, we
found that SRE and support engineers are more likely to analyze
unfamiliar logs than software developers. 92% of SRE and support
engineers chose the frequency higher than “often”, while 74% of
software engineers chose the same. The reason is that developers
are more likely to investigate incidents related to them or their
team. To summarize, it is worth exploring how to ease the burden
of understanding unfamiliar logs for engineers.

Q10: Overwhelming logs. Through our pilot study, we found
many participants complaining about dealing with overwhelming
logs (i.e., hard to distinguish failure-related logs from normal logs).
To quantitativelymeasure how serious the issue is, we asked towhat
extent the participant would agree or disagree with the complaint.
As presented in Figure 5 (b), around 77% of participants hold a
positive view for the question, while only 7% of participants do not
think so. Intuitively, the log size is tremendous for industry-scale
services, even after we scope down the period for investigation.
How to shrink down the significant volume of logs to a reasonable
size would be a challenging but valuable topic to explore.

4.2 Real-World Pain Points and Challenges
In this section, we present the pain points and challenges that the
participants have during log analysis. As presented in Table 3, we
list the most-voted and interesting pain points collected from our
survey participants. The pain points and challenges of free-text are
grouped in various categories by the systematic result organization
method we introduced in Section 3. Note that a participant may

mention multiple pain points, we classify each pain point to the
best-fit category for easy summarization.

Table 3: Pain points that participants encountered when an-
alyzing logs (#Par shows the number of participants).

Too many logs and missing logs #Par
Too many logs 15
Missing Logs 18
Log file is too large to open/join 3

Logs are hard to structurize

Logs are unformatted 4
Inefficient on extracting data from free-form fields 3
Cannot summarize or count for some log 2

Logs are difficult to understand

Hard to understand what log means 5
Do not understand log column name 5
Do not understand the logic and normal pattern behind logs 4
Lack of a good visualization tool 4

Finding failure-related logs is non-trivial

Hard to find failure-related logs 15
Logs are noisy 6
Difficult to compare “bad” logs with “good” logs 4

Correlating logs from various sources is challenging

Difficulty in correlating multiple log sources 17
Terminology differences make cross-team logs not align 14
Logs of various origins, sizes, formats and patterns 4

Others

Access control 7
Automated query generation for log analysis 3
Enrich incidents with automated log query/search result 2

1) “Too many logs” and “missing logs”: The huge volume
and incompleteness of logs have been two long-standing prob-
lems that bother engineers [40] and motivate many research stud-
ies [24, 39, 43, 46]. The log data is often too large to understand
completely: “there is too much information to read, and it is often hard
to find the key point” and “do not read logs as too many logs for an
incident”. On the other hand, the log data sometimes do not provide
sufficient information: “most useful logs are not enabled by default”
and “the information from the given log file is limited”. Another vivid
example is: “we try to reconstruct why a failure happened through
logs, which takes a lot of time and may sometimes be impossible if
there is inadequate logging in the intermediate code paths.” Although
“too many logs” and “missing logs” look like a paradox, they are
deeply tangled for complex software systems. Intuitively, more logs
provide more detailed information about a failure. However, it may
hurt the system operating efficiency and considerably lengthen the
time for diagnosis, making it like finding the needle in a haystack.

2) Logs are hard to structurize: If all logs are well-structured,
it is straightforward to gain insights by setting filters or statistical
analysis (e.g., count and sum). However, as presented in Section 2
and Figure 2 (a), a large amount of logs are still unstructured. These
unstructured logs are hard for direct analysis due to the free-form
text representation. For instance, it is reported that “difficult to code
around the various log formats”, “log data is poorly formatted, and
summarization is hard because of unique identifiers in log messages,
but dropping those require lots of work”.

3) Logs are difficult to understand: Logs are initially designed
for human interpretation with natural language-like messages.
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However, log understanding is not as easy as reading natural lan-
guage statements due to multiple challenges: log message readiness,
understanding the logic behind logs and log field meaning, and the
lack of tools for understanding. For example, it was reported that
“not familiar with how things work due to lack of readiness” and “do
not understand which line means what”. A common way to analyze
logs is to learn the execution logic behind logs, which is non-trivial
with many interleaving logs from various sources and components.
An example is as follows: “for me, a lot of time is spent on figuring the
software logic behind the log records, and then, eventually, understand
why it behaves in a certain way.” Sometimes, logs are not sufficient
for developers to form a good understanding, requiring additional
digging on source code. For instance, “understanding the context in
which the log is being recorded, usually requires looking through code”.
Moreover, for structured logs or semi-structured logs, the log field
(column) name often indicates the physical meaning of that column.
Since the column name is usually short in length, understanding its
meaning is a challenge: “log column is not easily understandable” and
“understand the significance of different fields”. Several participants
also pointed out that “there is a lack of visualization tools”.

4) Finding failure-related logs is non-trivial: As pointed out
by our participants that “the log size is usually large even when
scoping down to a limited time span”, it is challenging to identify a
small number of key log messages that could indicate the failure
during diagnosis. Many survey participants complained that “hard
to find logs that could indicate the failure”, which motivated us
to design the Q10. To identify failure-indicating logs, a common
practice is to compare logs generated when a failure occurs with
logs generated when there is no failure. Feedback from an engineer
is “quickly identifying common patterns is hard and would be helpful.
For example, how many times we see log B following Log A would
be helpful to identify if what we are looking at is a normal pattern
or an anomaly”. But it is hard to achieve so since “you’re not really
sure what baseline/normal behavior is” and “don’t know whether the
information is expected or caused the issue”. Additionally, logs are
often very noisy. How to distinguish the failure-related logs from
non-fatal logs then becomes hard, e.g., “non-fatal errors that will
pop up can significantly increase the analysis time”, and “warning
message is not warning, just informational”.

5) Correlating logs from various sources is challenging:
Logs are often ingested from various sources to different files or
databases. To deeply understand a failure, engineers have to in-
spect multiple log sources, which becomes a pain point for many
survey participants. For instance, “hard to correlate logs to under-
stand the issue” and “have to interact with different log files to get a
good understanding of the issue, and then correlate them separately”.
Several obstacles are preventing the log correlation. First, different
log sources have different terminologies and column names. It is
mentioned that “cross-team logs requires interpretation which isn’t
always self-evident and requires digging” and “schema is not con-
sistent when dealing with complex systems”. Second, log data may
vary by provenance, size, formats, and patterns. It is challenging to
combine many heterogeneous logs to get a comprehensive view,
e.g., “do not know what the logs are about, where they come from and
what columns mean if you are new to the issue”.

6) Others: Some pain points that do not belong to any of the
categories mentioned above. A bunch of participants complained

that they could not access logs easily. However, this is necessary
since we must follow strict access control regulations to keep the in-
formation confidential. How to allow the feasibility for log analysis
while keeping the information confidential might be an existing di-
rection for exploration. Moreover, some engineers hope to involve
more automation in log analysis, e.g., automatically generating
the queries for analyzing logs, and the query results can later be
provided as a support to resolve a failure.

5 LOG ANALYSIS RESEARCH
Over the last decade, log analysis has attracted much attention
from academia [7, 13, 25, 37, 39, 49]. In this section, taking a simi-
lar structure as [16], we briefly introduce the mainstreaming log
analysis topics, including logging, log parsing, log-based anomaly
detection and failure diagnosis. We do not cover topics such as log
compression and failure prediction since they are less prevalent in
survey responses, which we leave for future work.

Logging: Logging refers to the instrumentation process of log-
ging statements in the source code [16] to improve the software
system diagnosability, maintenance, and performance (such as Lo-
gEnhancer [43], Log2 [12], and Errlog [41]). Most existing logging
research [4] focuses on where-to-log and what-to-log. Where-to-
log identifies the appropriate location in the source code to insert
logging statements. What-to-log studies how to determine the ver-
bosity level, static message, and variables in logging statements.

Log Parsing: Log parsing [15, 49] is a cornerstone task in the
log analysis research, which aims to transform the unstructured
logs into a well-structured format before feeding into the down-
stream applications (e.g., log-based anomaly detection). Specifically,
a log parser identifies the static log template (constant logging text)
and dynamic log parameters (variant runtime information such as
variable values) from each raw log message. Almost all existing log
parsers (e.g., Drain [15], Logram [7] and LenMa [34]) are based on
the data-driven paradigm. Namely, they take a large volume of raw
logs as the input and learn how to identify the common parts as
templates and the dynamic parts as parameters.

Log-based Anomaly Detection: Log-based anomaly detection
has attracted much attention in academia since the problem has
been well-formulated by Xu et al. [39], and the benchmark datasets
have been standardized and published in [18]. In general, a log
sequence (a series of ordered logs that record the execution flow in
a specific time-window/session/process) is the base unit of almost
all existing log-based anomaly detectors. After the log collection
and parsing, log sequences are represented as feature vectors using
the parsed log events [47] (e.g., counting log event occurrences in a
log sequence to construct an event count vector). Different anomaly
detectors then adopt various technologies to determine whether an
event count vector violates the normal behaviors. Existing log-based
anomaly detectors can be roughly summarized into two categories,
i.e., unsupervised approaches (e.g., PCA [39] and DeepLog [13])
and supervised approaches (e.g., SVM [22] and LogRobust [44]).

Log-based Failure Diagnosis: Logs have been widely lever-
aged to diagnose system failures. Broadly speaking, log-based di-
agnosis work can be categorized into two branches. One is recon-
structing a failed execution or separating different execution flows
based on log data [14, 27, 48]. The other branch is digging out the
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root-cause related log messages when failures occur. The basic idea
is to compare the difference between logs during the failure period
and reference logs without the failure. Approaches following this
paradigm include LogCluster [24], Log3C [17], and Onion [45].

6 GAP AND OPPORTUNITY
We have introduced industrial practices in Section 4 and academic
achievements in Section 5 on log analysis. In this section, we at-
tempt to present the gap observed when comparing actual needs
in the industry with log research in academia and discuss some op-
portunities. We organize this section by following the log research
topics in Section 5: logging, log parsing, anomaly detection and
failure diagnosis. In each subsection, we first introduce the current
practices and then share the gap and opportunity.

6.1 Logging
Logging is the process of instrumenting the source code with log-
ging statements. As presented in Section 5, existing logging research
concentrates on automating the decisionmaking ofwhere/what/how
to log. However, developers in the industry implement logging pri-
marily based on their domain expertise. Beyond it, engineers often
consider the benefit of logging from the usage scenario of the gen-
erated logs, which we will discuss as follows.

Current Practices Typically, engineers first import the log-
ging libraries (e.g., Log4j, Syslog) based on the usage scenario and
programming languages. Following the logging grammar, engi-
neers then decide the line where they want to insert a logging
statement and the content to record, including verbosity level
(Info/Warn/Debug, etc), static text and variables. The decision-
making is usually based on their programming experience and
understanding of the project. Logging statements could be updated
if necessary, especially when logs are found insufficient for diag-
nosing a failure. Experienced engineers may also consider the cost
of logging brought to the operation efficiency of software systems.
There are some public references to logging practices [26, 28]. Be-
sides, Yuan et al. [42] presented a summary of logging practices
in open-source projects based on the logging and its modification
history. Pecchia et al. [30] demonstrated a measurement study of
logging practices in a critical industrial domain.

Gap As concluded by Chen et al. [4], logging research mainly
focuses on how to insert the logging statements during the soft-
ware development automatically. A challenge mentioned by our
participant is to “find the balance between speed of finding the issue
(e.g., more detail logs) and development effort”. However, to our
best knowledge, there is a lack of off-the-shelf logging tools or
IDE extensions that can automate logging. For example, engineers
would expect the logging tools “integrated with the code where I
write/debug it every day, get that integrated into my IDE!” Besides
that gap, through our survey and interview results, we found that
engineers in the industry consider the logging issue more from
how they would interpret the generated logs. We summarized some
practical issues that are not well-covered in research: 1) Termi-
nology difference in logging. It is found that “different naming
conventions across teams and services make it really hard to figure
out what’s going on”. For example, “InciID” and “Incident ID” refer to
the sample concept. How to ensure different logging statements use

consistent terms remains a practical problem, which aligns with
the “weak naming convention” issue found by Pecchia et al. [30]. 2)
Logging that is hard to interpret. There are two practical pain
points found during the failure diagnosis, i.e., “not familiar with
how things work due to lack of readability”, and “logs are typically
written based on the developer’s perspective when they should be
based on helping the end-user (or whoever is reading the log) identify
and correct the problem”. These issues are directly related to the
logging quality (not readable). However, current logging research
might rarely consider it from the view of log usage.

Opportunity To address the issue of lacking off-the-shelf log-
ging tools, exploration on automated logging with tool support
is needed. Along this direction, many practical needs should be
considered, e.g., how to suggest the logging timely, how to avoid
the privacy issues when asking developers to upload their code
before suggesting logging statements. Another possible direction is
to produce readable and consistent logging. It desires research
efforts on how to produce logging statements such that they could
be more readable for developers or can facilitate the diagnosis pro-
cess. Meanwhile, it is important to check whether the naming in
logging statements is consistent within a component and cross
components or even address the inconsistency.

Finding 1: There is a lack of off-the-shelf logging tools and
current logging research is rarely approached from the log
usage perspective, which demands practical logging tools (or
IDE extensions) that could generate readable and consistent
logging statements.

6.2 Log Parsing
Most log parsing research aims to transform the unstructured logs
into a structured format by learning from a massive number of log
messages. In industry, structuring logs (i.e., log parsing) is crucial,
especially when summarizing the insights from logs.

Current Practices Log parsing in practice is often realized by
a rule-based approach. Usually, engineers query the log database
with either keyword search (e.g., contains “error code XX”) or com-
plex regular expressions to find the desired logs, as pointed out by
Rodrigues et al.[33]. These methods are adopted in log companies
such as Datadog [11] and Splunk [35]). However, manually struc-
turing logs is time-consuming and does not scale up to different log
sources. Our survey respondents pointed out the challenges that
“hard to extract data from free form fields” and “sometimes we try to
parse the message string, extracting desired fields or variables from a
fairly standard logging text’‘, as presented in Section 4.2.

Gap The first gap is that log research and industry practice
focus on logs of different formats. As presented in Figure 2 (a),
the unstructured log covered in most existing log research [16]
takes up only 25% of log formats that participants often work
with, while the majority of logs are either structured (41%) or
semi-structured (34%). The second gap is that log parsing is gen-
erally achieved by lightweight instrumentation, while the
after-the-fact data-driven log parsing are used in some re-
stricted scenarios (e.g., third-party libraries). In the 1-1 inter-
view, several product teams at Microsoft demonstrated the light-
weight instrumentation for log parsing, which we name as the
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event pre-assignment. Specifically, after engineers instrument log-
ging statements, commit the code and merge the pull request, a
logging action (like the GitHub Action) will be automatically trig-
gered. The action will profile the source code and insert a random-
generated unique event ID string to each newly-added logging
statement. In this way, the event ID (e.g., “Hzhtl7mk”) would be
printed together with the log message when executing each logging
statement. Therefore, in their log data, log messages generated from
the same logging statement share the same event ID. The template
and variable parts can then be extracted effortlessly. Another bene-
fit is that engineers can quickly locate the correct logging code and
its context for troubleshooting by searching the event ID. Similarly,
public logging frameworks such as Log4j [2] allow the print of
function name and log line number, which can also be combined and
utilized as an event ID to determine the unique logging statement.

Opportunity The above-mentioned event pre-assignment does
not mean to be perfect. For example, how to ensure that many event
IDs in a large system do not incur the collision, how to keep the
event ID consistent even when updating the logging statements.
There might be some simple solutions that should be further ex-
plored. Moreover, in scenarios such as the source code cannot be
accessed (e.g., in third-party libraries) or it is costly to refactor
the logging statements, how to assign the event IDs becomes an
open question. For example, can we leverage some dynamic in-
strumentation techniques to attach the event ID during runtime?
If not, data-driven log parsing might be the only possible solu-
tion for log structuring, which is exactly the direction that current
research [19, 49] is working on.

Finding 2: Research and industry focus on logs of distinct
formats. Log parsing is generally achieved with lightweight
instrumentation, while the after-the-effect data-driven meth-
ods are still promising in some restricted scenarios, such as
parsing logs of third-party libraries.

6.3 Anomaly Detection
Log anomaly detection research aims to identify whether a log
sequence (e.g., logs that record a workflow) is abnormal. However,
when talking about anomaly detection in industry, it usually refers
to the process of detecting failures in a software component or
system, which we use the term failure alerting to denote it.

Current Practices In modern software systems, failure alerting
is usually accomplished by an independent and reliable component
for continuous monitoring and alerting. Generally, the alerting com-
ponent consumes the metric data and raises alerts when detecting
an anomaly in the time series of metrics. The metric is the numeric
representation of data measured over time intervals, such as the
failure rate, request latency or CPU utilization rate per five minutes.
When metrics are sometimes insufficient, engineers may resort to
logs for failure alerting. In detail, engineers would transform the
logs into metrics by aggregation, such as counting the number of
the desired log event within a period. If the logs are unstructured,
log parsing is applied first to extract the log events. As pointed out
by our survey participant, “Our team needs to count the number of
exception-E message by querying from our service logs and set up the
alert. Once triggered, our on-call engineers will engage to find out
why these exceptions happen and take actions.”

Table 4: Comparison of log-based anomaly detection in
academia and failure alerting in industry.

Anomaly Detection Failure Alerting

Goal Identify abnormal behav-
iors in log sequences

Identify failures causing
disruption to systems

Processing Unstructured logs→ Log
sequences feature vectors

Unstructured Logs→Met-
rics

Technique Invariant Mining, PCA,
LSTM, etc (see Section 5)

Time series anomaly de-
tection methods (e.g., k-
sigma/thresholding)

Efficiency Mostly not real-time Real-time
Interpretability Not easily understood Easy to understand
Noise More Less

Gap In Table 4, we compared anomaly detection with unstruc-
tured logs in academia (in short, anomaly detection) and failure
alerting in the industry (in short, failure alerting) from various
perspectives, including the goal, processing method and technique,
efficiency, interpretability, noise, and the generalization ability. 1)
Goal. Anomaly detection targets to distinguish “abnormal” log se-
quences (e.g., all logs of a user request) from normal log sequences.
However, the industry is more concerned with whether any failure
is observed and disrupts the system functionalities. It is crucial to
note that the detected anomaly does not necessarily imply a real
system failure, especially in large-scale systems with strong fault-
tolerance ability. The anomalous log sequence may only indicate
a different program execution flow. 2) Processing method and
technique. Anomaly detection usually transforms the logs into
a high-dimension feature vector of log sequence, followed by ma-
chine learning or deep learning techniques to predict whether a log
sequence is abnormal. On the contrary, failure alerting transforms
unstructured logs into metrics as mentioned above and then uses
methods such as k-sigma to detect time-series anomalies. 3) Effi-
ciency. Most existing anomaly detection studies do not consider
the need for real-time processing, which however is indispensable
for industrial systems. It is worthy to note that the metric signals
are usually collected in real time, while log collection sometimes
may incur a long latency delay. 4) Interpretability and Noise.
Anomaly detection results from a sophisticated model are often dif-
ficult to interpret, especially for engineers who do not understand
machine learning. Instead, the metric like failure rate is a clear
signal to measure the system health status with strong physical
meaning. In addition, anomaly detection tends to identifies more
false positives (noises), since an anomalous log sequence may not
reflect a failure but instead an abnormal user behavior.

Opportunity Due to the huge differences between anomaly
detection in industry and failure alerting in industry, many oppor-
tunities could arise when we try to bridge the gap between the
two sides. For example, how to increase the efficiency of anomaly
detection methods given a great volume of streaming logs? Also, re-
garding the interpretability, how to identify anomalies and provide
the reasoning logic behind the identification, such as which logs
in the log sequence are abnormal and what is the normal pattern?
One of our survey participants also mentioned that “quickly iden-
tifying common patterns is hard and would be helpful. For example,
how many times do we see log B following Log A would be helpful to
identify if what we are looking at is a normal pattern or an anomaly”.
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It can act as a vivid example of what engineers would expect from
the interpretation of anomaly detection results. From another point
of view, to distinguish the abnormal and normal logs, anomaly
detection could be utilized to identify which subset of logs are
more likely to reflect the root cause of a failure.

Finding 3: A huge gap exists between anomaly detection
in academia and failure alerting in the industry regarding
the goal, techniques, efficiency, interpretability, etc. Many
opportunities could arise towards bridging the gap, e.g., in-
terpretable anomaly detection.

6.4 Failure Diagnosis
Log-based failure diagnosis, which aims to find out hints towards
the root cause, could occur in various scenarios, such as triage,
mitigation, or root cause analysis.

Current Practices The diagnosis process could vary for dif-
ferent products, teams and even engineers. Here we presented a
typical way of diagnosis. In general, engineers usually “search for
the symptom or related error messages in a knowledge base to see
whether the failure happened before”. If so, they will follow the
trouble-shooting guide (TSG) to diagnose the problem. Instead, if
the failure is unknown, engineers have to “manually inspect any
necessary information like logs” by methods such as keyword search
and reading line by line (as presented in Figure 3). To diagnose
these failures, engineers often need to understand the logic behind
log messages by reconstructing the execution flow and figuring out
the root cause. However, if there are too many logs or it is hard
to construct the execution flow, a typical way is to compare logs
generated in a failure with logs generated in normal status and then
find the differentiating log messages. During this process, engineers
may have to query many times to get the desired information.

Gap Many existing failure diagnosis research aims to extract
clues or insights from logs generated by a batch of failures. Failures
in such a batch share the same root cause and similar log patterns. A
common solution is to make a contrast analysis. For example, Zhang
et al. [45] identify the incident-indicating logs by contrasting logs
on normal and failed nodes. The batch failure diagnosis is close
to the current industrial practices, and one possible reason is
that many diagnosis research was actually conducted in industrial
scenarios (such as LogCluster [37], Onion [45], Log3C [17]). In these
cases, the failure amount and log size reach a large scale, making
applying various statistical analysis methods feasible. However, our
survey and interview results also suggest the strong demands for
diagnosing an individual failure, but few research studies
focused on it. The individual failure does not happen as a batch
(such as customer reported issues), which are often analyzed case
by case, and the underlying root cause could vary.

Opportunity In diagnosing individual failures, engineers often
record the analysis process and solution as a TSG for future reuse.
For example, in the TSG, engineers could record which log data
to inspect, which log messages to check against (in the form of
log queries), root cause and resolution, etc. However, these TSGs
currently do not follow a standard format and are often manually
crafted. Additionally, it is often a manual searching and execution
process before finding the right TSGs. Therefore, to make log-based
diagnosis more efficient, a potential direction is to make the TSG

easy to manage and reuse. In detail, we may set up a standard
format for TSGs, transform the TSG into an executable one and
even summarize the TSG intelligently. Then, we may automatically
recommend TSG based on the logs and execute it.

Finding 4: Batch failure diagnosis in industry aligns well
with academia, but diagnosing individual failure is not well-
explored. Opportunities such as automated execution of
trouble-shooting guides might be promising.

7 LIMITATIONS
Survey Subject: Our survey participants are limited to employees at
a single software company, hence the results may not generalize
to other companies. To mitigate the threat to generalizabily, we
recruited participants from products of diverse organizations, in-
cluding Azure, M365, Windows, Bing and LinkedIn, as introduced
in Section 3. These products cover most existing software types in
the broad industry. Moreover, our participants are of different roles,
such as software engineers and program managers. Besides, to mit-
igate threats to internal validity, we further recruited participants
by various channels. For instance, we posted the survey to several
communities consisting of employees with different backgrounds.

Research Work Survey: In the research survey section (Section5),
following the latest literature by He et al. [16], we focus more on
the unstructured log research work because it is the mainstream
of the automated log data analysis field. Structured log analysis is
also well studied in academia. Nevertheless, in the "structured log"
setting, log parsing is no longer necessary due to its standardized
format. Anomaly detection and diagnosis on top of structured logs
can also be formulated into well-established problems, such as
time series based anomaly detection [32] or attributes combination
search problem [23]. Therefore, followingHe et al. [16], our research
review does not incorporate the structured log analysis work.

Cognitive Bias: Participants are likely to hold different under-
standings of the same concept owning to their different back-
grounds. For example, facing the question "Which log format do
you analyze most frequently?" some respondents may misunder-
stand "semi-structured logs" as "structured" because the former is
often organized as the table (structured) format. To mitigate this
construct validity, we attached some explanations or examples (as
shown in Figure 1) by the side of those questions.

8 CONCLUSION
This study presents a comprehensive survey study on log analysis
in Microsoft with a questionnaire and individual interviews. Based
on the study results, we summarized the log usage in practice from
various perspectives, including log format, scenario, method, tool,
and challenges. These results reveal the first-hand experience of
log analysis practitioners in the production environment. Besides,
we discussed the current practices, gaps between the industry and
academia, and future opportunities for exploration. For example,
there is a huge gap between log-based anomaly detection research
and failure alerting practices from various perspectives. We hope
these findings can make log analysis researchers and practitioners
realize the significant gap between industry and academia and
inspire interesting future directions that facilitate the convergence
of these two lines of log analysis research.
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