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ABSTRACT
One of the most common threats to online service system’s relia-
bility is disk failure. Many disk failure prediction techniques have
been developed to predict failures before they actually occur, allow-
ing proactive steps to be taken to minimize service disruption and
increase service reliability. Existing approaches for disk failure pre-
diction do not differentiate among various types of disk failure. In
industrial practice, however, different product teams treat distinct
types of disk failures as different prediction tasks in large-scale
online service systems like Microsoft 365. For example, team A is
concerned with physical disk errors, while team B focuses on I/O
delay. In this paper, we propose MTHC (Multi-Task Hierarchical
Classification) to enhance the performance of disk failure prediction
for each task via multi-task learning. In addition, MTHC introduces
a novel hierarchy-aware mechanism to deal with the data imbal-
ance problem, which is a severe issue in the area of disk failure
prediction. We show that MTHC can be easily utilized to enhance
most state-of-the-art disk failure prediction models. Our experi-
ments on both industrial and public datasets demonstrate that such
disk failure prediction models enhanced by MTHC performs much
better than those models working without MTHC. Furthermore,
our experiments also present that the hierarchical-aware mecha-
nism underlying MTHC can alleviate the data imbalance problem
and thus improve the practical performance of various disk fail-
ure prediction models. Experiments for online industrial dataset in
Microsoft 365 also demonstrates the effectiveness of our MTHC. 1
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1 INTRODUCTION
Online service systems, such as Facebook, Microsoft 365, and Gmail,
are responsible for providing online services for millions of cus-
tomers [2, 31]. Enhancing high service reliability is of great im-
portance to improve user experience and prevent financial loss [7].
However, failures of these systems are still inevitable. Disk failures
are one of the most common types of failures in online service sys-
tems [5, 19, 20, 25, 28], which could result in service interruptions
and potentially financial loss. For example, disk failure accounts
for 76-95 percent of all hardware failed components in data cen-
ters, according to a recent study [18]. Therefore, it is important to
proactively predict disk failures.

To eliminate the loss caused by disk failures, many approaches
[5, 12–14, 27, 28, 32–34, 37, 38] have been proposed to predict disk
failures in advance. Current state-of-art disk failure prediction ap-
proaches based on temporal sequential models, such as LSTM [34],
RNN [32], Transformer [16], and TCNN [28]. These approaches
usually regard the task of disk failure prediction as a binary clas-
sification problem, and build a model to predict whether a disk
will fail or not in the near future. The input of the classification
model is typically SMART (Self-Monitoring, Analysis and Report-
ing Technology) data [1], which records status of disks and provides
important indicators during the whole lifetime of disks. Engineers
may take proactive actions in response to the disk failure prediction.

Existing methods generally concern a disk will fail or not in
the near future, without differentiating among various disk failure
types. However, our first insight is that predicting different types
of disk failures is an urgent need in industrial practice. Specifically,
in the large-scale Microsoft 365 (short as M365) online service sys-
tems, different teams focus on different types of disk failures. For
example, team A mainly care about physical disk errors, while team
B concentrate on I/O latency. Intuitively, the current solution is
to build multiple disk failure prediction models for each team’s
specific prediction task. These independent models, on the other
hand, ignore the correlation among different types of disk failure
prediction. For example, disk failures caused by intensive I/O oper-
ations may also result in physical disk damage. That is, considering
different tasks is pursued in practice, which motivates us to adopt
multi-task learning.

1
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In addition, since disks usually keep healthy for several months
and even several years until failure, the numbers of failed disks and
healthy ones are extremely imbalanced, which significantly affects
failure prediction accuracy [16]. To alleviate the data imbalance,
existing approaches utilize under-sampling or over-sampling meth-
ods to balance the ratio between the numbers of failed disks and
healthy ones. However, these sampling methods change the data
distribution and tend to cause overfitting, so they cannot achieve
good performance in real scenario. Also, we gain another insight
from practice that disk physical structure needs to be considered.
That is, disks in the same machine share an identical computing
environment, thus their status is correlated. Intuitively, when a disk
fails, the status of the corresponding machine will be unhealthy.
Because a machine typically contains multiple disks, the numbers
of healthy and unhealthy machines are more evenly distributed
than the numbers of healthy and unhealthy disks. Thus, we can
leverage machine-level prediction to handle the data imbalance
problem.

In this paper, to deal with the two issues discussed above, we pro-
pose a Multi-Task Hierarchical Classification (MTHC) framework.
MTHC consists of two mechanisms, i.e., multi-task mechanism
and hierarchy-aware mechanism. Different from existing meth-
ods, which do not differentiate among various types of disk failures,
our multi-task mechanism aims to capture the shared information
among different types of disk failures, and thus applies multi-task
learning technique. Although different tasks correspond to different
types of disk failures, they can share networks to extract common
feature embeddings. The intuition is that disks from different tasks
are usually in the same data format, and there are non-negligible
relations among different types of disk failures, which can help
enhance the performance of each task. In this way, compared to
dealing with each single task individually, multi-task mechanism
shares common feature embeddings among tasks and could help
improve the prediction accuracy of each task.

To deal with the data imbalance problem in the scenario of disk
failure prediction [5, 12, 27, 28, 33, 34], we propose to conduct
two-step hierarchical classification. We firstly predict whether the
machine is unhealthy, i.e., contains failure disks. Compared to disks,
the numbers of unhealthy machines and healthy ones are not so
imbalanced. If the machine is predicted as unhealthy, we then pre-
dict each disk on the machine. That is, our proposed MTHC can
alleviate the data imbalance problem of disk failure prediction and
enhance the prediction performance.

Noted that MTHC is orthogonal with previous models, i.e., previ-
ous models can be very easily integrated into ourMTHC framework.
For the purpose of evaluating the effectiveness and robustness of
MTHC, based on industrial dataset and two public datasets, we
conduct extensive experiments to compare various disk failure
prediction models enhanced by MTHC with those models work-
ing without MTHC. The experiments on three datasets indicate
that MTHC considerably enhances the performance of disk failure
prediction. Furthermore, MTHC have been successfully applied to

The main contributions of this paper are as follows:

• We reveal disk failure prediction challenges in industrial
practice, i.e., different disk failure tasks and data imbalanced

problem. We design a framework MTHC based on domain-
specific insights.

• We point out that different disk failure tasks are of high
correlation and thus propose multi-task mechanism to en-
hance the performance of each task. Besides, we propose
hierarchy-aware mechanism to deal with the data imbal-
ance issue in the scenario of disk failure prediction.

• Extensive experiments on industrial dataset and public
datasets demonstrate that our proposed MTHC framework
considerably enhances the performance various disk failure
prediction models.

2 BACKGROUND AND MOTIVATION
2.1 Disk Failure Prediction
In practice, disk failures are not only caused by hardware break-
down, but also related to heavy usage, such as intensive I/O and
overheating [15, 17].

Disk failure prediction has been arousing wide concern with
the rapid expansion of storage systems in data centers. With the
development of deep learning, nowadays many researchers derive
disk failure prediction models using deep learning techniques based
on SMART data [15]. SMART is a self-monitoring system supported
by most disk manufacturers, and records disk attributes such as
"Raw_Read_Error_Rate" and "Power_On_Hours", which monitor the
internal health status of disks [1]. Deep learning based methods
regard disk failure prediction as a binary classification problem,
leveraging neural networks such as recurrent neural network (RNN)
[32], long short-term memory (LSTM) [34], and temporal convolu-
tional neural network (TCNN) [28].

2.2 Different Types of Disk Failures
Previous disk failure prediction methods only concern whether
disks will fail or not in the near future. In practice, however, dif-
ferent teams in the M365 online service systems focus on distinct
disk problems and mitigation methods, resulting in different per-
spectives on failure. The below are two important type of disk
failures.

• Hardware failure [17]: Physical disk errors, such as disk
aging, missing file system fields, and read-write header
damage, are the primary concerns of team A.

• Performance failure [15]: I/O delay, which is frequently
caused by overload, is more important to team B.

Therefore, in practice, especially in large-scale companies, to
deal with their own disk failure problems, each team maintains
a disk "failure" prediction model. Each model deals with a binary
classification problem, where the class corresponds to the specific
type of disk failure, such as physical disk errors and high I/O latency.

Although the disk failure prediction models from different teams
deal with different failure issues, they are common in some aspects.
Firstly, different teams utilize the same data format, i.e. SMART
data (Self-Monitoring, Analysis, and Reporting Technology) [1].
Secondly, based on the same data format, different teams usually
utilize similar models, i.e., temporal sequence models such as LSTM
to predict disk failures. Thirdly, nonnegligible correlation exists
among disks with different types of disk failures, which can be
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utilized [6]. For example, for both disks with physical failures and
high I/O latency, the related feature values in disk data, such as
read/write time might both deviate from normal interval. A disk
with physical errors could usually lead to high I/O latency.

Considering the common properties mentioned above, instead
of building an individual model for each team, we can regard the
prediction for each team as a task and integrate tasks from different
teams as a multi-task problem. Specifically, we aggregate disk data
from different teams and feed the whole data into a multi-task
model. The model contains several tasks, and each task deal with
the specific type of disk failure from corresponding team. To utilize
the feature similarity among disks with different types of disk
failures, we share the embedding layers to extract common features
for disks, i.e., hard parameter sharing. In this way, based on multi-
task learning, each task learns embedded feature from other tasks,
and the performance of each individual task will be enhanced.

2.3 Hierarchical infrastructure
Previous disk failure prediction methods just deal with each disk
individually, without considering the correlation among "similar"
disks. However, in M365 online service systems, disks are deployed
in a hierarchical infrastructure. Specifically, the top-down hierar-
chical structure in M365 online service systems can be formulated
as: datacenter, rack, server, and disk. Disks with the same server
field denotes that they are deployed on the same machine, and each
machine contains a number of disks.

Under the circumstance, disks on the same machine share some
common properties in two aspects. Firstly, for the convenience of
deployment and management, disks from the same machine are
usually in the same configurations. Secondly, disks on the same
machine obviously share many resources, such as power and pe-
ripheral devices. These two aspects indicate that the status of disks
from the same machine are more similar than those from different
machines.

Since disks usually stay healthy for several months and even
several years until failure, the number of failed disks and healthy
ones is extremely imbalanced. Thus disk failure prediction methods
have been facing the imbalance problem, which could affect the
performance of prediction models. Considering the common prop-
erties mentioned above, we can alleviate the imbalance issue via
the hierarchical infrastructure in M365 online service systems. As
illustrated before, disks from the same machine have strong correla-
tions. Instead of predicting the failure of each disk individually, we
firstly predict whether the machine is unhealthy. We continually
predict each disk on the machine if so and stop if not. To this end,
we regard disk failure prediction as a hierarchical classification
problem by reducing the data imbalance, which can enhance the
performance of disk failure prediction.

3 METHOD
3.1 Problem Definition
In our proposed model, we formulate disk failure prediction into
a multi-task hierarchical classification problem. In practice, each
team focuses on one specific type of disk failure, which is regarded
as a task. The total number of tasks is denoted as 𝐾 . Generally,
disks are deployed in physical machines. There are 𝑁 machines in

Figure 1: MTHC framework

total and each machine contains 𝐷 disks. For each disk, a feature
vector of𝑛 attributes of a disk’s status is recorded at each timestamp.
Specifically, 𝑋𝑖, 𝑗 denotes the feature of 𝑗𝑡ℎ disk on the 𝑖𝑡ℎ machine,
which records feature vector from timestamp 𝑡𝑖 to timestamp 𝑡𝑖 + ℎ
(𝑡𝑖 is the beginning timestamp). Therefore, the shape of 𝑋𝑖, 𝑗 is ℎ ×𝑛.
The training set consists of pairs in the format of {𝑋𝑖, 𝑗 , 𝑌𝑖, 𝑗 }. As
mentioned above,𝑋𝑖, 𝑗 denotes the time series feature of correspond-
ing disk. 𝑌𝑖, 𝑗 is a one-hot vector whose length equals to the number
of tasks. 𝑌𝑖, 𝑗,𝑘 = 1 means the disk will encounter with the 𝑘𝑡ℎ type
of disk failure. Our goal is to maximize the accuracy of estimating
whether a disk will fail or not for each task.

3.2 Overview
As introduced before, MTHC enhances the performance of disk
failure prediction from two aspects: multi-task and hierarchical
classification. In this section, we briefly overview two mechanisms
of our method: multi-task mechanism and hierarchy-aware mecha-
nism. The framework of MTHC is shown as Figure 1.

• Multi-task mechanism for Various Types of Disk Fail-
ures: the input of multi-task mechanism consists of disk
features from different tasks. This mechanism utilizes a
shared time series model to encode the disk features from
different tasks. Based on the shared encoding vectors, multi-
task mechanism outputs a binary classification for each
task.

• Hierarchy-aware mechanism for Imbalanced Data:
the input of this mechanism consists features of disks on
target machine. Instead of directly classifying the state of
each disk, hierarchy-aware mechanism classifies whether
the machine contains failure disk(s). It has no need to assess
each disk if the mechanism determines that the machine is
"healthy", and disks on the machine will only be reviewed
if the mechanism determines that the machine includes
failure disk(s).

Following two mechanisms, to aggregate two prediction results
from multi-task mechanism and hierarchy-aware mechanism, we
multiply them as the final prediction score.

3.3 Multi-Task mechanism
Previous disk failure prediction methods do not consider specific
types of disk failures. However, in real practice, different teams
in M365 online service systems focus on different types of disk

3
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failures. For example, team A mainly cares about physical disk
errors, while team B cares more about I/O latency. Generally, each
team maintains their own disk failure prediction model. That is
to say, the problem is regarded as several single tasks, and there
is no interactions between these tasks. However, as illustrated in
section 2, disks from different teams are in the same data format,
i.e., SMART data, and nonnegligible correlation exists among disks
with different types of disk failures. Considering these properties,
MTHC integrates different tasks together and predict failure for
types of disk failures through one model, which performs as a multi-
task failure prediction model. In this way, the performance of each
single task will be enhanced via multi-task learning.

Feature
Encoding

Task A

Task B

Task C

Full-Connected
Layer

Task-Specific
Layer

Encoding
Layer

Disk Data

e.g., LSTM, etc.

Figure 2: Multi-task mechanism

The architecture of multi-task mechanism is shown in Figure 2.
The encoding layer is usually a time series model, which extracts
shared feature for disks from different types of disk failures. The
state-of-the-art disk failure prediction models can be very easily
integrated into most multi-task mechanism. Taking LSTM as an
example, a raw disk feature with the shape of ℎ ∗ 𝑛 is fed into a
bidirectional LSTM network to capture the sequence information
[21]. The hidden states at all time steps of LSTM are aggregated as
the final encoding vector. Based on sharing encoding vector, task-
aware binary classifications are implemented via full-connected
layers. For each type of disk failure, a full-connected layer outputs a
2-dimension feature, followed by a softmax layer as the prediction
result. For disk𝑋𝑖, 𝑗 , the label for the 𝑘𝑡ℎ task branch is exactly𝑌𝑖, 𝑗,𝑘 .
During inference phrase, each task only focuses on the correspond-
ing prediction result of multi-task mechanism, regardless of results
from other task branches.

3.4 Hierarchy-aware mechanism
Almost all the existing approaches neglect the physical location
information among disks. However, disks are deployed in physical
machines, and each machine contains a number of disks. Disks
deployed on the same machine are usually in the same configura-
tions and share various resources, such as CPU, power, and so on.
Therefore, these disks are highly related in their features.

If we aggregate features from all the disks from the same ma-
chine, the aggregated features could act on behalf of the state of
the whole machine. Utilizing machine-level information, we can
implement hierarchical classification and alleviate the imbalance
classification problem of disk failure prediction. Specifically, via
the aggregated features, we can firstly predict whether the whole
machine is unhealthy. A machine is unhealthy if there is at least one

Xi,1

Xi,2

Xi,D

…
 

ai,1

ai,2

ai,D

…
 

Feature
Encoding

mi
Network

Q

softmax

Network
K

Mi P(Mi)

Disk Data

Machine 
Failure 

Probability 

Figure 3: Hierarchy-aware mechanism

disk on the machine will fail in the near future. When the machine
is considered healthy, there is no need to predict each disk on the
machine. And only when the machine is predicted as unhealthy
will we check each disk. The label for 𝑖𝑡ℎ machine can be calculated
as:

𝑌𝑚𝑖
=


1,

∑𝐷
𝑧=1 𝑌𝑖,𝑧 > 0

0,
∑𝐷
𝑧=1 𝑌𝑖,𝑧 < 0

where 𝐷 denotes the number of disks on the machine. Obviously,
the whole classification process is hierarchical. Considering that
there exists huge imbalance between positive samples and negative
samples, hierarchical classification could alleviate the issue and
reduce the classification difficulties.

To obtain machine-level features, a hierarchy-aware mechanism
combines all the disk features on the machine. However, instead
of treating each disk equally, it is expected to focus more on those
failure disks. To solve the issue, we utilize attention mechanism [11]
to capture the importance of each disk. The final hierarchy-aware
feature is a weighted accumulation of disk features. The process is
shown in Figure 3. On the 𝑖𝑡ℎ machine, encoded vector 𝑎𝑖, 𝑗 for disk
𝑗 is obtained via sharing encoding layer.𝑚𝑖 is a combination of all
the 𝑎𝑖, 𝑗 . The query vector is 𝑞𝑖 = 𝑄 (𝑚𝑖 ), and the key vector for
𝑗𝑡ℎ disk is 𝑘𝑖, 𝑗 = 𝐾 (𝑥𝑖, 𝑗 ), [30], where Q and K are fully connected
networks. The weight𝑤𝑖, 𝑗 for 𝑗𝑡ℎ disk is calculated as:

𝑤𝑖, 𝑗 =
exp(𝑞𝑖 · 𝑘𝑖, 𝑗 )∑𝐷
𝑧=1 exp(𝑞𝑖 · 𝑘𝑖,𝑧)

(1)

The weighted accumulation of disk features for 𝑖𝑡ℎ machine can be
calculated as:

𝑀𝑖 =

𝐷∑︁
𝑧=1

(𝑤𝑖,𝑧 · 𝑥𝑖,𝑧) (2)

Following the attention mechanism, the calculated hierarchy-
aware feature 𝑀𝑖 is fed into a fully connected layer and softmax
layer to output the prediction of the machine, which is similar to
the one in multi-task mechanism. The label for the machine is 0 if
all the disks on the 𝑖𝑡ℎ machine are healthy. The label is 1 if at least
one failure disk exists, regardless of the kind of disk failure.

4
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3.5 Loss Function
In this section, we illustrate the loss function of MTHC. There are
two loss functions in our model: multi-task loss and hierarchy-
aware loss.

3.5.1 Multi-task loss. The total multi-task loss is calculated as:

L𝑑 =
1
𝐾

𝐾∑︁
𝑘=1

L𝑑𝑘 (3)

where𝐾 denotes the number of tasks. For 𝑘𝑡ℎ task, the task-specific
loss is calculated as:

L𝑑𝑘 = −
∑
𝑖, 𝑗 𝐶𝐸 (𝑌𝑖, 𝑗,𝑘 , 𝑃𝑑𝑖,𝑗,𝑘 ) · 𝑌𝑚𝑖

𝐷 · 𝑁 (4)

where 𝑁 denotes the number of machines, 𝐷 denotes the number
of disks per machine, 𝑃𝑑𝑖,𝑗,𝑘 denotes the failure prediction probabil-
ity of 𝑗𝑡ℎ disk on 𝑖𝑡ℎ machine for 𝑘𝑡ℎ task, and 𝑌𝑖, 𝑗,𝑘 denotes the
corresponding ground truth. The function 𝐶𝐸 denotes the cross
entropy loss between prediction score and ground truth, which is
calculated as:

𝐶𝐸 (𝑌, 𝑃) = 𝑌 · log (𝑃) + (1 − 𝑌 ) · log (1 − 𝑃) (5)

Recall that𝑌𝑚𝑖
represents the label for 𝑖𝑡ℎ machine, and wemultiply

the loss by 𝑌𝑚𝑖
since we only train disks when the corresponding

machine indeed contains failure disks.

3.5.2 Hierarchy-aware loss. The hierarchy-aware loss is below:

L𝑚 = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶𝐸 (𝑌𝑚𝑖
, 𝑃𝑚𝑖

) (6)

where 𝑃𝑚𝑖
denotes the failure prediction probability of the 𝑖𝑡ℎ

machine, and 𝑌𝑚𝑖
denotes the corresponding ground truth. Recall

that the function 𝐶𝐸 denotes the cross entropy loss defined in Eq.5.
The total loss is a combination of multi-task loss and hierarchy-

aware loss, which can be calculated as:

L = L𝑑 + L𝑚 (7)

It is noted that, since hierarchy-aware information did not attract
much attention in previous methods, public datasets did not con-
tain hierarchy-aware labels. For these datasets, our model cannot
implement hierarchical classification, and our loss function only
includes multi-task loss in this situation.

4 EXPERIMENTS
To evaluate the effectiveness and efficiency of MTHC, we conduct
extensive experiments on public datasets and online industrial
datasets. In this section, we first describe the experimental settings.
Then, we introduce an industrial dataset and two public datasets.
The experiments results are presented in Sec.4.3.

4.1 Experimental Settings
To demonstrate the robustness of MTHC, we adopt MTHC on four
state-of-the-art methods which are widely used in the context
of disk failure prediction: RNN [32], LSTM [34], Transformer [16],
and TCNN [28]. All experiments are conducted on a workstation
equipped with NVIDIA Tesla P100 GPU and CUDA 10.2. The code
is implemented based on PyTorch 1.8. During the training process,

Table 1: Summary of the backblaze dataset.

Dataset
Task 1 Task 2 Task 3

#Pos #Neg #Pos #Neg #Pos #Neg

Training Set 70 6,998 531 45,176 125 12,512
Test Set 29 2,999 108 19,361 52 5,363

we utilize Adam optimizer and set the initial learning rate as 2e-3.
In addition, the training epoch is set to 100 and the batch size is 64.
Noted that the public datasets do not contain machine-level labels,
therefore, we do not conduct hierarchical classification on them.

Table 2: Summary of the Ali dataset.

Dataset
Task 1 Task 2 Task 3

#Pos #Neg #Pos #Neg #Pos #Neg

Training Set 56 9,908 96 9,868 64 9,900
Test Set 85 8,505 65 8,525 43 8,547

4.2 Datasets
4.2.1 Industrial Dataset. In Microsoft 365 online service system,
several teams focus on disk problems. Team A focuses on physical
disk errors, such as aging of disks, missing fields of file systems
and damage to read-write headers. While team B cares more about
I/O latency, which is usually caused by overload. We regard disk
failure prediction for each team as a task. Different from public
datasets which do not contain machine-level information, disks in
Microsoft 365 online service systems are deployed on machines,
and each machine contains a number of disks. Disk data is in the
format of SMART and the attributes are collected hourly. Note
that the machine-level information is included in our dataset. We
predict the failure status of disks based on the latest 72-hour data.
We collect online data from two teams from June 2021 to December
2021, which contains millions of disks. We treat the first five-month
data as the training set and the last month as the test set.

4.2.2 Public Datasets.

Backblaze Dataset: Backblaze2 [3] takes a snapshot of each op-
erational hard drive, which includes basic drive information in the
format of SMART statistics. It contains three-year data (October
2018 to June 2021), where each feature vector contains timestamp,
disk ID, Vendor ID, SMART attributes. We divide the whole data
by the model field that denotes different manufacturers, and regard
disk failure prediction for each manufacturer as one task. We expect
to enhance the failure prediction accuracy for each type of manufac-
turer via multi-task learning. We treat the data from October 2018
to September 2019 as the training set and the data from October
2019 to June 2021 as the test set. More detailed information for each
dataset is presented in Table 1.

2https://www.backblaze.com/b2/hard-drive-test-data.html
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Table 3: Comparative results of various disk failure predictionmodels with and withoutMTHC on industry data. Note that single
denotes single-task, multi denotes using multi-task mechanism, and hierarchy denotes using hierarchy-aware mechanism.

Approach
Task-1 Task-2

Precision Recall F1-score Precision Recall F1-score

single-LSTM[34] 69.59% 65.37% 67.41% 65.13% 58.62% 61.71%
multi-LSTM 66.53% 70.56% 68.49% 67.84% 59.66% 63.49%

single-hierarchy-LSTM 74.29% 67.53% 70.75% 70.90% 59.80% 64.88%
multi-hierarchy-LSTM 75.71% 68.83% 72.11% 75.44% 59.31% 66.41%

single-RNN[32] 62.93% 70.56% 66.53% 62.66% 50.34% 55.83%
multi-RNN 63.57% 71.00% 67.08% 71.23% 52.07% 60.16%

single-hierarchy-RNN 67.87% 73.16% 70.42% 61.74% 56.21% 58.84%
multi-hierarchy-RNN 72.00% 70.13% 71.05% 70.04% 54.83% 61.51%

single-Trans[16] 63.77% 73.16% 68.15% 63.39% 55.52% 59.19%
multi-Trans 64.31% 74.89% 69.20% 66.12% 55.17% 60.15%

single-hierarchy-Trans 65.67% 76.19 % 70.54% 62.37% 61.72% 62.05%
multi-hierarchy-Trans 67.57% 75.76% 71.43% 67.97% 60.00% 63.74%

single-TCNN[28] 68.42% 67.53% 67.97% 59.41% 55.52% 57.40%
multi-TCNN 69.78% 67.97% 68.86% 58.42% 61.03% 59.70%

single-hierarchy-TCNN 65.87% 71.86% 68.84% 61.31% 57.93% 59.57%
multi-hierarchy-TCNN 70.80% 69.26% 70.02% 58.02% 64.83% 61.24%

Ali Dataset: we adopt the publicly available Ali3 dataset, a real
industrial data collected by the Alibaba Cloud’s data centers and
widely used to evaluate the performance of methods for disk failure
prediction. The public Ali data contains the timestamp, serial num-
ber, disk manufacturer, disk model, normalized SMART attributes,
raw SMART attributes and fault type of each disk. We randomly
select three tasks according to the fault type, all of which are to
predict the specific type of disk failure. We adopt the dataset from
July 2017 to February 2018 as the training set, and treat March 2018
to July 2018 as the test set. More detailed information for the public
dataset is listed in Table 2.

The two datasets above are both collected on a daily basis. We
use consecutive 30 days of SMART data of each disk following the
standard practice4. Specifically, we remove all-empty features and
single-valued features from the raw SMART attributes, and take
the rest as the final representation of disk.

4.3 Experimental Results
4.3.1 Industrial Dataset. We implement MTHC on Microsoft 365
online service systems, and Table 3 presents the comparative results
of MTHC with its corresponding single model of state-of-the-art
competitors on the dataset. To explore the effectiveness of two
mechanisms of MTHC, we conduct experiments for each mecha-
nism.

Based on only multi-task mechanism, four approaches all outper-
forms ones with single task. Specifically, for task 1 (physical disk

3https://tianchi.aliyun.com/dataset/dataDetail?dataId=70251
4https://tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us
5https://tianchi.aliyun.com/competition/entrance/231775/rankingList/1

errors), multi-task mechanism exceeds single task by an average
of 0.89 percent of F1 score, and 2.34 percent of F1 score for task 2
(I/O latency). The result demonstrates the effectiveness and robust-
ness of multi-task mechanism. Besides, we notice that task 2 (I/O
latency) obtains much more enhancement than task 1 (physical disk
errors). Because disks with physical disk errors could usually lead
to high I/O latency, which help improve the performance of task
2. In contrast, disks with high I/O latency do not always indicates
physical errors, which are usually caused by overload.

Based on only hierarchy-aware mechanism, four approaches
exceed ones with single task by a large margin. Specifically, for task
1 (physical disk errors), the hierarchy-aware mechanism exceeds
the single task by an average of 2.62 percent of F1 score, and 2.80
percent of F1 score for task 2 (I/O latency). The result demonstrates
that hierarchy-aware mechanism reduces the imbalance problem
of positive and negative samples and enhances the performance of
disk failure prediction via hierarchical classification. In addition,
compared to multi-task mechanism, hierarchy-aware mechanism
obtains comparable improvement for task 1 (physical disk errors)
and task 2 (I/O latency). Because disk infrastructures from two
teams are very isomorphic, i.e., hierarchical, and the machines from
both teams contain a number of disks.

Combining multi-task mechanism and hierarchy-aware mecha-
nism, the performance of disk failure prediction is further enhanced.
Specifically, for task 1 (physical disk errors),MTHCModule exceeds
single task by an average of 3.64 percent of F1 score, and 4.69 per-
cent of F1 score for task 2 (I/O latency). Noted that the F1-score of
online disk failure prediction is usually low, and it is not easy to
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Table 4: Comparative results of various disk failure prediction models with single-task and multi-task on BackBlaze Dataset.

Approach
Task-1 Task-2 Task-3

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

single-LSTM [34] 88.00% 75.86% 81.48% 82.69% 79.63% 81.13% 71.43% 67.31% 69.31%
multi-LSTM 88.46% 79.31% 83.64% 90.11% 75.93% 82.41% 80.00% 69.23% 74.23%

single-RNN [32] 82.61% 65.52% 73.08% 92.31% 77.78% 84.42% 69.31% 60.31% 67.31%
multi-RNN 91.30% 72.41% 80.77% 94.31% 76.85% 84.69% 77.78% 67.31% 72.16%

single-Trans [16] 95.24% 68.97% 80.00% 89.36% 77.78% 83.17% 75.56% 65.38% 70.10%
multi-Trans 95.46% 72.41% 82.35% 88.54% 78.70% 83.33% 86.84% 63.46% 73.33%

single-TCNN [28] 81.82% 62.07% 70.59% 91.95% 74.07% 82.05% 68.89% 59.62% 63.92%
multi-TCNN 80.00% 68.97% 74.07% 93.27% 76.85% 84.26% 76.32% 55.77% 64.44%

Table 5: Comparative results of various disk failure prediction models with single-task and multi-task on Ali Dataset. Note that
due to the difficulty of all tasks on this dataset, the prediction results in this dataset are low. The first on the leaderboard only
achieves 49.07% F1-score5.

Approach
Task-1 Task-2 Task-3

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
single-LSTM[34] 39.80% 45.88% 42.62% 42.11% 61.54% 50.00% 40.00% 46.51% 43.01%
multi-LSTM 38.57% 63.53% 48.00% 37.76% 83.53% 51.92% 45.24% 44.19% 44.71%

single-RNN[32] 39.17% 55.29% 45.85% 38.81% 80.00% 52.26% 39.34% 55.81% 46.15%
multi-RNN 37.59% 58.82% 45.87% 39.53% 78.46% 52.58% 48.94% 53.49% 51.11%

single-Trans[16] 35.77% 51.76% 42.31% 42.48% 73.85% 53.93% 50.00% 46.51% 48.19%
multi-Trans 40.68% 56.47% 47.29% 41.67% 76.92% 54.05% 46.30% 58.14% 51.55%

single-TCNN[28] 42.45% 52.94% 47.12% 34.65% 67.69% 45.83% 48.89% 51.16% 50.00%
multi-TCNN 46.08% 55.29% 50.27% 35.16% 69.23% 46.63% 60.00% 48.84% 53.85%

improve it due to severely missing data and extreme data imbalance
problem in practice [16].

In all, MTHC based approaches significantly outperforms corre-
sponding single-model ones, which demonstrates the effectiveness
and robustness of our MTHC.

4.3.2 Public Datasets. We also use the public datasets (the Back-
blaze and Ali datasets) to evaluate the performance of the proposed
approach. Note that we only evaluate the multi-task mechanism
here due to the missing of machine-level information in the datasets.

The results on the Backblaze dataset are presented in Table 4. All
the multi-task based approaches outperform corresponding single-
task ones. On average,multi-task based approaches achieves the F1-
score values with 80.21%, 83.67% and 71.04%, which are 3.92%, 0.98%
and 3.38% greater than corresponding single-task approach for each
task. In addition, according to Table 4, Task 1 and Task 3 contain
fewer positive samples than the Task 2, while the performance
enhancement of Task 1 and Task 3 is higher than that of Task 2.
This demonstrates that multi-task architecture is very suitable for
the failure prediction task with few positive samples.

The results on the Alibaba Cloud’s dataset are shown in Ta-
ble 5. The four multi-task based approaches exceed corresponding
single-task ones by a large margin. On average, multi-task based
approaches achieves the F1-score values with 47.86%, 51.30% and
50.31%, which are 3.38%, 0.79% and 3.47% greater than correspond-
ing single-task approach for each task. It is noted that the result
of various methods for Alibaba Cloud’s data are all low due to the
difficulty of the dataset. The first on the leaderboard only achieves
the F1-score value with 49.07%5.

5 DEPLOYMENT AND DISCUSSION
In this section, we introduce the deployment of our MTHC and
lessons learned. We have run our MTHC pipeline on M365 large
scale online service systems, which contains millions of disks to
serve a huge number of customers. The whole pipeline is run on
Azure databrick, which consists of three phases: data fetching phase,
data processing phase and model processing phase.

5.1 Deployment
Data fetching phase: In this phase, service Smart_ctl is called
hourly to collect SMART data from each server in two teams. The
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collected SMART data is stored in Azure, and is transferred by a
distributed and reliable streaming data moving tool to ensure the
consistence and completeness of data.

Data processing phase: This phase contains data cleaning and
feature engineering. Data cleaning is firstly scheduled to deal with
missing data. Then feature engineering jobs are scheduled to obtain
disk feature vectors [26, 29], which are the input of MTHC. Fea-
ture engineering jobs contain several operations, such as filtering
irrelevant attributes, concatenating different type of attributes, and
appending machine-level information for disks. We accelerate the
feature engineering process via Spark.

Model processing phase: In this phase, we utilize disk feature
vectors obtained in data processing phase and train the disk failure
prediction tasks with MTHC LSTM model. The trained model gives
the failure scores for each disk and each task. Note that each task
only focuses on the corresponding failure type. Disks with high
failure probability are stored in Azure Table. Engineers from each
team query half an hour and select disks with corresponding high
failure probability from Azure Table and take proactive actions.
For example, team A could select disks with high physical error
probability and transfer the data on the disks to healthy ones, i.e.,
live migration.

To evaluate the effectiveness of MTHC from the business impact
point of view, we employ A/B testing to measure the number of
virtual machine interruptions saved through proactive mitigation
based on failure prediction signals. According to the testing re-
sult, compared to single-task based approach, our proposed MTHC
notably reduced the number of virtual machine interruptions per
month forM365 online service systems, whichwas of great enhance-
ment for the service reliability of M365 online service systems and
brought considerable benefits.

5.2 Lessons Learned
During the deployment of MTHC, we found that missing data is
a serious problem that can lead to poor prediction model perfor-
mance. Missing data is frequently caused by poor data collection
and transmission quality. Besides, when a disk is unhealthy, it may
fail to provide SMART data, which might signal a failure due to
missing data. In other words, we can utilize data missing to predict
failures. However, we currently just populate zero based on the
standard processing of disk failure prediction. In the future, we aim
to handle the missing data systematically.

6 RELATEDWORK
6.1 Disk failure prediction
In recent years, as disk failures have received increasing attention,
many methods of disk failure prediction have been proposed. These
methods can be roughly divided into two categories: traditional
machine learning based and deep learning based.

To improve the prediction performance, traditional machine
learning-based models such as support vector machines [34] and
tree-basedmachine learningmodels [5, 12, 13, 27, 33] utilize SMART
data for disk failure prediction. However, these traditional machine
learning based approaches can’t handle the temporal information
well [28], while deep learning based approaches can make better
use of the temporal information. Deep learning based approaches,

including recurrent neural network (RNN) [32], long short-term
memory (LSTM) [34] and temporal convolutional neural network
(TCNN) [28], perform better than traditional machine learning
based ones for disk failure prediction.

Compared to existing disk failure prediction approaches which
do not focus on specific failure types, our proposed MTHC frame-
work integrates disks from each team and utilize multi-task learning
to enhance the performance for each single task and introduces
a novel node hierarchical classification approach to deal with the
extreme data imbalance of disk failure prediction problem. Note
that our proposed MTHC is orthogonal with previous models, i.e.,
it can be very easily to integrated previous models into MTHC and
enhances the performance of disk failure prediction.

6.2 Multi-task learning
Multi-task learning has been used successfully across many applica-
tions of machine learning, from natural language processing [8] and
speech recognition [10] to computer vision [23] and drug discovery
[22, 24]. And there are many opportunities for multi-task learning
on real-world problems [6]. In areas of multi-task learning, shared
representations are utilized to explore common patterns among a
collection of related tasks. Compared to training the models sep-
arately, these shared representations can help improve learning
efficiency and prediction accuracy for the task-specific models. [6].

In the context of deep learning, the methods of multi-task learn-
ing [24, 35, 36] can be divided into two groups: soft parameter
sharing and hard parameter sharing. In soft parameter sharing,
each task maintains its own model with its own parameters, and
the distance between the model parameters of different tasks regu-
larized in order to encourage the parameters from different tasks
to be similar [9]. Compared to soft parameter sharing, hard param-
eter sharing methods share the hidden layers (i.e., representations)
among tasks while keeping task-specific output layers for each
task. And the loss function for hard parameter sharing is typically
a combination of multiple loss functions corresponding to multiple
tasks. Compared to soft parameter sharing, hard parameter sharing
greatly reduces the risk of overfitting [4], and our MTHC utilizes
hard parameter sharing.

7 CONCLUSION
Disk failure is one of the most frequently failing components in
online service systems, which could reduce the service reliability.
Disk failure prediction has been attracting extensive attention. In
this paper, we propose a Multi-Task Hierarchy Classification frame-
work named MTHC for disk failure prediction, which consists of
two main mechanisms, i.e., multi-task mechanism and hierarchy-
aware mechanism. Compared to existing approaches which do not
focus on specific failure types, we emphasize that different teams
focuses on different types of disk failures in real practice. Multi-task
mechanism integrates disks from each team and utilize multi-task
learning to enhance the performance for each single task. Moreover,
hierarchy-aware mechanism introduces a novel node hierarchical
classification approach to deal with the extreme data imbalance of
disk failure prediction problem. Our experiments on both industrial
and public datasets demonstrate that multi-task based approaches
achieve much better performance than corresponding single-task

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Multi-task Hierarchical Classification for Disk Failure Prediction in Online Service Systems KDD ’22, August 14–18, 2022, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

based ones. Further, experiments also demonstrate that hierarchy-
aware mechanism can alleviate the imbalance problem and enhance
the performance of various disk failure prediction approaches.
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