
Aegis: Attribution of Control Plane Change Impact
across Layers and Components for Cloud Systems

Xiaohan Yan †, Ken Hsieh †, Yasitha Liyanage †, Minghua Ma ‡,
Murali Chintalapati †, Qingwei Lin ‡, Yingnong Dang †, and Dongmei Zhang ‡

†Microsoft Azure ‡Microsoft Research

Abstract—Modern cloud control plane infrastructure like
Microsoft Azure has evolved into a complex one to serve customer
needs for diverse types of services and adequate cloud-based
resources. On such interconnected system, implementing changes
at one component can have an impact on other components, even
across different hierarchical computing layers. As a result of
the complexity and interconnected nature of the cloud-based
services, it poses a challenge to correctly attribute service
quality degradation to a control plane change, to infer causality
between the two and to mitigate any negative impact. In this
paper, we present Aegis, an end-to-end analytical service for
attributing control plane change impact across computing layers
and service components in large-scale real-world cloud systems.
Aegis processes and correlates service health signals and control
plane changes across components to construct the most probable
causal relationship. Aegis at its core leverages a domain knowledge-
driven correlation algorithm to attribute platform signals to
changes, and a counterfactual projection model to quantify control
plane change impact to customers. Aegis can mitigate the impact
of bad changes by alerting service team and recommending
pausing the bad ones. Since Aegis’ inception in Azure Control
Plane 12 months ago, it has caught several bad changes across
service components and layers, and promptly paused them to
guard the quality of service. Aegis achieves precision and recall
around 80% on real-world control plane deployments.

Index Terms—Safe Deployment, Regression Detection, Impact
Assessment, Counterfactual Analysis, Cloud Computing

I. INTRODUCTION

As cloud computing continue to grow in scale and gain
popularity [1]–[3], the cloud management system, also known
as the control plane [4], is becoming more complex to provide
services like resource creation, scheduling, and deletion. Each
service is a component that is deployed in different computing
layers throughout the cloud infrastructure. The control plane
frequently gets deployed changes by the developers in order to
address issues, add new features, and enhance performance [5].
Control plane changes may result in service interruptions, user
annoyance, and significant financial loss due to the importation
of defect code or configurations [6]–[9]. For example, AWS
control plane outages, which impacted almost one-third of
the public cloud market, had a negative impact on numerous
companies and end users [10].

Conventionally, defects in changes are avoided by conducting
various testing methods under a simulated environment [4], [11].
These approaches, however, often oversimplify the computing
environment of a complex cloud system, leading to a gap
between testing and production environments [12], [13]. To
overcome the limitation of testing, component teams follow a

safe change policy to conduct gradual rollout over batches of
location units and enforce baking time between consecutive
ones [5]. The hope is that any bad change would manifest in
an early stage and get caught sooner to avoid a blast radius
of impact. For example, a major hotfix of the control plane
component can take place over 46 regions in five batches, each
of which contains multiple regions, with 6-8 hours baking time
between consecutive batches.

To guard change health, component teams often adopt
local watchdogs and monitors to catch anomalous service
performance [3], [14]–[24]. Some of the monitors are intel-
ligent to attribute service anomalies to its own changes and
provide guidance on investigation and mitigation. However,
existing component-level monitors for many control plane
components have their scope limited to the underlying service
and computing layer. The lack of insights into changes and
performance across components and layers introduces a blind
spot in guarding change health for the entire control plane.
However, it is non-trivial to attribute faults to changes across
components and layers. For one, a naive approach that inspects
the proximity between faults and changes would simply fail,
because there is almost always some change right before a
fault spike.

In Section II-C we discuss in detail the challenge posed by
high concurrency level of changes. In addition, the choice
of candidate fault signals and components for correlation
requires domain knowledge to be distilled from the dependency
structure shown in Figure 1. Finally, unlike data plane where
changes occur at node level, control plane components deploy
changes at a higher computing layer (e.g., region, zone, cluster).
This results in magnitudes of difference for available change
instances between data plane and control plane; many of the
successful correlation practice on data plane (e.g., [5]) does
not directly apply to a control plane scenario.

To address the aforementioned challenges, we introduce
Aegis, an end-to-end analytical service for detecting and mitigat-
ing bad changes to ensure control plane service quality. Aegis
consumes platform reliability and latency signals measured
at different granularities (e.g., fleetwide, workload-specific,
subscription-scoped signals), computing layers (e.g., region,
zone) and service components (e.g., QoS1 telemetry from
CRP, NRP etc.). It correlates detected platform anomalies with

1Quality of Service (QoS) telemetry stores success and failure info of API
calls for the underlying service component (e.g., ApiQosEvent for CRP)

software change events from relevant components and evaluates
the strength of causality. Once a bad change is identified,
Aegis takes actions to mitigate negative impacts by alerting the
corresponding component team and, if applicable, automatically
stop ongoing bad change via a change orchestration service.

Aegis at its core leverages a domain knowledge-driven
correlation engine and a counterfactual-based impact evalu-
ation engine. The correlation engine evaluates temporal and
spatial fault prevalence pivoted upon a change and distills
a correlation2 score to indicate the strength of relevance
between the change and platform anomalies. In correlation,
Aegis accounts for domain knowledge about the computing
system in several ways, including using customized weights
to specify dependency knowledge between a fault type and
a given component. To evaluate customer impact of a bad
change, Aegis invokes its impact evaluation engine, which uses
counterfactual projection methods to quantify the impact on
both deployed and undeployed units. We will discuss the two
core engines in greater detail in Section III-C and III-E.

As Aegis has been developed and running in Azure Control
Plane over the past 12 months, it has caught several bad changes
across control plane components, including CRP, NRP, RNM,
AzSM and AzAllocator. The defects in these changes range
from pure code bug that did not manifest during testing, to
missing binaries during the change process, to broken contracts
with another component. After catching these bad changes,
Aegis automatically alerted corresponding teams with accurate
attribution to change build version and prompted mitigated
negative impacts by involving component team to revert their
change or roll out a fix. Aegis contributes to Azure quality
by complementing existing component-level monitors and
providing a holistic view of fleet-wide performance.

To sum up, this work has the following major contributions:
• We describe how control plane component teams enable

changes via code change or configuration change. We
further motivate our work with technical challenges and
formulate the main problem (Section II).

• We propose a novel approach named Aegis to attribute
cloud control plane change impact via innovative tech-
niques for fault correlation, decision validation and impact
assessment (Section III).

• We demonstrate the business impact of Aegis through
case studies of good catches and extensive experiments
(Section IV and Section V).

II. BACKGROUND AND MOTIVATION

A. Azure Control Plane

A dependable and high-performing cloud infrastructure plays
a fundamental role in holding the quality bar for its service. A
modern cloud computing system like Microsoft Azure employs
a complex infrastructure to meet diverse needs on service
and resource [5], [25], [26]. For example, a cloud computing

2Here correlation does not mean Pearson’s correlation. We use correlation
to indicate a generic process for evaluating the strength of relevancy between
two entities (e.g., anomaly and change).

Fig. 1. Azure compute architecture with component dependency

infrastructure includes physical server devices organized in a
hierarchical structure that consists of computing regions, zones,
clusters, and nodes. Virtual services like virtual machines (VMs)
or computing containers run under hierarchical layers to provide
remote computing and storage functionality to customers. The
physical complexity of the infrastructure is amplified by the
interconnected nature of service components, each of which
being loosely-coupled microservices for managing certain cloud
resources. For example, Compute Resource Provider (CRP) is
a component that processes requests from clients and other
components (via APIs), such as requests for creating VMs
or allocating resources. Figure 1 shows interactions among
various service components under the current design of Azure
compute architecture. Among the service components, those
operating at region, zone or cluster levels constitute the control
plane, which manages the infrastructure and provides interfaces
for their functionalities. Below the control plane to node level,
a data plane is made up of various plugins (called agents)
running in a virtual machine hosting environment.

B. Change Events in Azure Control Plane

An Azure control plane component has its underlying
microservices loosely coupled to perform certain functionalities.
For instance, CRP, Network Resource Provider (NRP) and
Storage Resource Provider (SRP) manage their respective
resources as their names suggest. By design, these control
plane components operate at computing layers above nodes.
When it comes to deploying changes, we categorize these
components by computing layers of their deployments in Table
I. These changes range from a regular code release to one-
time-off bug fix to configuration change. The heterogeneity of
these changes not only reflects in the diversity of deployed
layer and nature of a change, but that variations exist even after
scoping down to one component. For instance, CRP uses two
branches to deploy non-test builds: the release branch and hotfix
branch. CRP deployments to public regions are divided into
two parts: the first rollout takes place from the release branch
to six regions, followed by the second rollout taking place
from the hotfix branch to the remaining regions. Additionally,
CRP may deploy from the hotfix branch to selected regions to
fix known issues. Note that we use changes and deployments
interchangeably for the rest of the paper.

When comparing change events between control plane and
data plane, the contrast of the amount of deployment instances

2

TABLE I
CONTROL PLANE COMPONENTS WITH CORRESPONDING

DEPLOYMENT COMPUTING LAYERS.

Layer Control Plane Component

Region CPlat (CRP etc.), DiskRP, NRP, RNM etc.
Zone AzSM, AzAllocator etc.
Cluster NSM, XStore etc.

available for evaluation becomes prominent. Conceptually, the
number of instances from a given deployment is determined
by the amount of underlying deployment units. A data plane
deployment typically occurs at the node level, meaning that
the nodes gradually getting deployed are on the million scale.
In contrast, control plane components deploy at higher layers
and result in much fewer instances. To get a sense of resource
partition above nodes, Azure currently has around 50 public
regions, each of which is partitioned into three zones. In terms
of clusters, there are a total of a couple of thousands of clusters
from these public regions. This limitation makes it challenging
to attribute platform degradation to a change event on control
plane.

Because of the complexity and interconnected nature of
the cloud system, component changes may introduce bugs
or defects that impact not only its own service but also its
dependent services. For example, in December 2021, an NRP’s
code change had an issue with name reservation for IP labels.
The NRP release issue interrupted CRP’s service, showing up
as upticks in deleting VM failures due to networking errors.
A bad change may also manifest across computing layers. For
example, a zone-level service, AzAllocator introduced a bug in
their rollout in East US Canary. The bug caused fabric failures
when CRP tried to create VMs in the region. To guard the
quality of control plane services, we propose to leverage all
the health signals that are available across components and
computing layers. To achieve it, we need to address some
technical challenges that are described in the following section.

C. Challenges with System-wide Correlation

Following a safe deployment policy, component teams in
Azure control plane conduct rollout gradually and employ
component-level monitors to monitor platform health during
and after a change. A typical component-level safe deployment
monitor restricts its scope to the underlying service when it
comes to picking fault signals (e.g., QoS telemetry) and change
events (e.g., code and configuration changes) for coverage. For
example, CRP’s safe deployment monitor performs anomaly
detection over CRP’s ApiQosEvent and ProcessFailure signals
and correlates detected anomalies with a nearby CRP rollout.
The scope limitation hinders the capability of accurate attri-
bution, because a platform anomaly, if were indeed caused
by a bad change, is not necessarily caused by a CRP change.
Naively extending the coverage of fault signals and change
events across components and computing layers poses several
risks, e.g., worsening correlation quality with the introduction
of irrelevant noise. We identify the following challenges in

Fig. 2. Distributions of weekly deployment volume from eight components:
(Top) canary environment and (Bottom) prod environment. As indicated by
two dashed lines (for mean values), canary environment has higher deployment
concurrency level than prod environment on average.

conducting system-wide correlation that aims to break the
boundaries of components and layers on control plane.

Challenge 1: Concurrent deployments across compo-
nents increases the size of candidate pool and the diffi-
cult level of accurate attribution. Earlier environments
like canary have even higher concurrency level than
prod environment, making it challenging to catch an
issue in canary.

In Figure 2, we compare the distribution of weekly deploy-
ment volume from eight control plane components between
canary and prod environments. Using mean deployment volume
to measure the deployment concurrency, we find canary’s
concurrency level is more than two folds of that of prod.

Challenge 2: Attributing platform anomalies to change
events across computing layers requires innovation on
methodology.

Existing correlation techniques used in component-level safe
deployment monitors require both the fault signal and deploy-
ment signal to be measured over the same computing layer,
e.g., both being measured at region level. These techniques
do not directly apply to a cross-layer correlation scenario.
An example of cross-layer correlation involves connecting a
zone-level component change (e.g., AzAllocator’s rollout) with
region-level platform anomaly (e.g., CRP’s upticks of fabric
failures).

3

Challenge 3: Domain knowledge should be systemati-
cally incorporated into the design of the attribution of
control plane changes.

Domain knowledge plays an essential role in many successful
analytical practices in Azure. The domain knowledge may be
represented in various forms, but at the core it must reflect
the cloud architecture (e.g., Figure 1). In practice, we abstract
how Azure cloud computing system works into forms that can
be readily incorporated into machine learning models as prior
information. For example. Compute Artifact Publisher Service
(CAPS), which is a CPlat service for publishers to publish
images, is not involved in deleting VMs at all. This piece of
domain knowledge should preclude our model from correlating
deleting VM failures with a CAPS change.

Challenge 4: The business need of knowing customer
impact from a bad change requires intelligent impact
evaluation techniques.

Finally, our cloud business needs to be able to answer
questions like ”what is the customer impact from the bad
change?” and ”how much more impact would have been there
had the bad change continue getting deployed?” Component
teams may have their own way of quantifying a regression
impact to their service from the engineering perspective.
However, gaps exist to connect the engineering side and our
customers in understanding the regression impact on customer
workloads and scenarios. We need to develop an impact
evaluation model to answer these questions from the customer’s
standpoint.

III. AEGIS SYSTEM DESIGN

To overcome the limitations of component-based monitoring
strategy on Azure control plane, we create a novel regression
attribution and mitigation service called Aegis, which addresses
the technical challenges described in Section II-C. The capabil-
ities of Aegis include: (1) connecting various platform health
signals with changes across components and computing layers;
(2) driving accurate attribution decision to changes with rich
evidence; (3) mitigating negative customer impact by taking
actions on bad changes. We use the following notations in the
rest of the section to facilitate model discussion.

Notation: Let F(s) = {Fu
t (s)}u,t denote a multi-

dimensional time series of faults of type s over time t and
location u. The fault type s can have different meanings for
different parts of Aegis. Each Fui

tj (s) =
(
ui, tj , y

i
j(s)

)
encodes

the location ui, time tj and fault metric value yij(s). We denote
change events with a set of sequences E = {Eu1 , Eu2 , ...}.
Each Eui =

(
(ti1, c

i
1, v

i
1), (t

i
2, c

i
2, v

i
2), ...

)
is a sequence of pairs

(tij , c
i
j , v

i
j) where tij is the time when the change event from

component cij of version vij has occurred to the unit ui, and
tij < tij+1.

A. System Overview

As is shown in Figure 3, Aegis follows a top-down design
and constitutes five subsystems: Signal Collection, Correlation
Engine, Validation Engine, Impact Evaluation Engine and
Decision & Action Engine. Each subsystem runs independently
and continuously at its own cadence (e.g., every 15min, every
hour) using a job scheduling service. Aegis consumes two
kinds of signals from Azure control plane: platform fault
telemetry and component changes events. The fault telemetry
includes API call exceptions in the forms of failures and long
latency. For change events, Aegis currently covers various
code deployments and configuration changes on control plane.
The input signals are processed by the Correlation Engine to
evaluate relevancy for pairs of platform anomaly and change
using a correlation model propelled by both ML algorithms
and domain knowledge of the cloud system. By employing
novel temporal and spatial correlation algorithms (see Section
III-C1) and consolidating decisions at build level (see Section
III-C3), Aegis successfully tackles Challenge 1 and attributes
change impact with high confidence. The innovation in Section
III-C4 addresses Challenge 2 by allowing Aegis connecting
platform anomalies and changes among components residing
on different computing layers.

Aegis adopts a Validation Engine to correct for known
sources of environmental noise that may lead to incorrect
correlation results (see Section III-D). For example, a planned
powered-down drill may introduce noise in failures, leading
to noisy correlations. Such noisy correlations are more easily
removed as a downstream task as opposed to incorporating
the drill signals into each input source. The Validation Engine
also validates a correlation result using auxiliary info such as
insights distilled from call stacks of correlated API calls. The
use of the Validation Engine to validate correlation decisions
with known noise in a cloud system serves as a solution to
Challenge 3. As another example of incorporating domain
knowledge, we embed fault-to-component relevancy as weights
and factor the weights into correlations (see Section III-C2).

To address Challenge 4, an Impact Evaluation Engine
consumes the correlation output to quantify customer impact
of the correlated deployment, e.g., delta of operation failure
rate before and after a deployment. The Impact Evaluation
Engine at its core is a counterfactual projection model that
models relationships among computing units (e.g., region-to-
region relation) using historical data and projects a change to
undeployed units.

The validated correlation result and customer impact result
are processed by the Decision & Action Engine to drive a
decision for each deployment and take actions if needed. For the
deployments that receive a ”no-go” decision, the Action Engine
notify corresponding component team with incident ticket. For
ongoing deployments that Aegis decides to pause, the Action
Engine emits its stopping signal to a deployment orchestration
service to automatically pause the deployment. These mitigation
actions avoid further customer pain and control the blast radius
of a defect change.

4

Fig. 3. Overview of Aegis System

Fig. 4. Process Platform Health Signals into Anomalies

B. Signal Collections

Aegis consumes various platform fault signals from compo-
nent service logs (e.g., QoS telemetry). These signals include
API call failures and long latency instances, and are measured
with different granularities (e.g., fleetwide, workload level and
subscription level) and over different computing layers (e.g.,
region, zone, cluster). For the signals arriving as raw fault
series, we perform anomaly detection on top as is shown in
Figure 4. The choice of the anomaly detection model depends
on several factors, e.g., the sparsity level of fault signals. A
deduplication among all detected anomalies is needed to avoid
double count. By design, the set of fault anomalies A can be
treated as a subset of input fault signals F , i.e., A ⊂ F . The
output anomalies conform to the schema specified in Table II.
Particularly, the Signature of an anomaly encodes the anomaly
type and other info that can categorize the underlying faults. For
example, Signature is defined as a tuple of {operationName,
resultCode, exceptionType} for CRP QoS failures. The fault
metric V alue of an anomaly quantifies the severity and strength
of the anomaly. Commonly used metrics include fault count and
impacted subscription count of failures and latency measured
at the 50th, 95th, 99th percentiles.

The other signals being processed are change events collected
over control plane components. The changes include regular
code deployment to hotfix and configuration change. For some
components, their changes can be readily processed from their

TABLE II
PLATFORM FAULT ANOMALY SCHEMA

Attribute Description

TimeStamp When the anomaly is detected
LocationId Where the anomaly is detected
LocationLayer Region, zone, cluster etc.
Signature Fault signature of the anomaly
Value Fault metric value of the anomaly
AdditionalInfo Additional info of the anomaly

service logs; for others, we get their change records from
deployment orchestration service logs. The change event signals
conform to the schema specified in Table III. Particularly, the
LocationLayer specifies the computing layer where a change
gets deployed. Aegis currently considers deployments occurring
at region, zone, and cluster levels.

TABLE III
COMPONENT CHANGE EVENT SCHEMA

Attribute Description

TimeStamp When the change event gets deployed
LocationId Where the change event gets deployed
LocationLayer Region, zone, cluster etc.
Component Component deploying the change event
AdditionalInfo Additional info of the change event

C. Correlation Engine

We conduct correlation analysis between platform anomalies
and change events to evaluate their strength of relevancy and
infer causal relationship between the two. Historically, only
a subset of platform anomalies was caused by bad changes,
while the remaining ones were due to transient issues, hardware
issues etc. Using the following correlation techniques, Aegis
can separate platform anomalies that are likely caused by
bad changes from the rest and attribute the anomalies to

5

respective changes with high confidence. The correlation engine
assigns each deployment a correlation score whose value
indicates the likelihood of the deployment having caused one
or more platform anomalies. The engine at its core is an
unsupervised learning model that inspects temporal and spatial
fault prevalence around a deployment and ingests domain
knowledge into the evaluation. A causal relationship may be
derived by consolidating correlation results per component
build version. We also describe how cross-layer correlation is
achieved by the engine.

1) Temporal and Spatial Correlations: For simplicity of
notation, we partition the s-typed platform faults by location
units {ui}:

F(s) = {Fu1(s), Fu2(s), ...}
where Fui(s) =

(
(t1, y

i
1(s)), (t2, y

i
2(s)), ...

)
. (1)

Each Fui(s) is a sequence of pairs (tj , y
i
j(s)) where tj is the

time when s-typed faults with metric value yij(s) occur on unit
ui. Consider a change event that gets deployed to unit ui,

e =
(
ti(e), c

i
(e), v

i
(e)

)
∈ Eui (2)

where ti(e), c
i
(e) and vi(e) are the deployment time, component

and build version for the change, respectively.
By design, Aegis detects anomalies Aui(s) on top of Fui(s),

i.e., Aui(s) ⊂ Fui(s). For correlation with change e, we focus
on anomalies occurring after the change, i.e.,

Aui

(e)(s) =
{(

tj , y
i
j(s)

)
∈ Aui(s)

∣∣tj > ti(e)

}
. (3)

An s-typed anomaly from unit ui can be characterized with
its time and metric value,

a =
(
t(a), y

i
(a)(s)

)
∈ Aui

(e)(s). (4)

In order to standardize the anomalies post the deployment
of e, we compute µi(e, s) and σi(e, s) as mean and standard
deviation of the pre-deployment fault metrics:{

yij(s)
∣∣(tj , yij(s)) ∈ Fui(s) and tj < ti(e)

}
. (5)

We compute a temporal correlation score for change e from
(2) and an s-type anomaly a (that occurs after e) from (4) as

TSi(e, a, s) =
yi(a)(s)− µi(e, s)

σi(e, s)
· df

(
t(a), t

i
(e)

)
(6)

where df
(
t(a), t

i
(e)

)
is a time-decay factor whose value expo-

nentially decreases as the gap (t(a)−ti(e)) expands. For example,
we may choose df(t1, t2) = (1 + exp(α ∗ (t1 − t2)))

−1 where
α > 0 controls the decaying speed. The temporal correlation
score encodes the temporal significance of s-typed anomalies
after the change, compared to pre-deployment fault signals of
the same kind. The score is higher if s-typed faults become
more prominent after e gets deployed.

Temporal correlation by itself is prone to false positives
when platform anomalies and a change happen to be close
in time by coincidence. To curb the noise introduced by the

Fig. 5. Visualize temporal and spatial correlations. The circles correspond
to faults with circle size representing the underlying fault metric value. The
colored bars represent different changes.

temporal analysis, we inspect the same kind of faults across
all units regardless of whether a unit has change e or not:

M(e, s) =

{(
tj , y

i′

j

)
∈
⋃
i′

Fui′ (s)
∣∣|tj − ti(e)| <

w

2

}
(7)

where w is the window size for collecting the faults, e.g.,
w = 14day. Our practical observation is that anomaly a would
no longer be prominent after comparing its metric value across
all units for the same type of faults, if a was not caused by
change e on unit ui. We compute a spatial correlation score
for change e and anomaly a as

SSi(e, a, s) =
Percentile

(
yi(a)(s),M(e, s)

)
100

(8)

where Percentile
(
yi(a)(s),M(e, s)

)
computes the percentile

of anomaly metric value yi(a)(s) among the entire pool of
the same kind of faults M(e, s). By definition, the spatial
correlation score takes a value between 0 and 1. Anomalies
that get correlated to innocent deployments out of pure temporal
coincidence often receive a low spatial correlation score after
inspecting the same kind of faults across all units. On the
other hand, anomalies that indeed manifest a bad change are
likely to retain its significance after spatial comparison by
receiving a high spatial correlation score. The temporal and
spatial correlations are illustrated in Figure 5.

2) Incorporate Fault Relevancy with Component into Corre-
lation: We abstract the domain knowledge about the fault type,
s, and the underlying component of the change, ci(e), using a
weight table of the following form:

W (s, c) =

weight > default if c is relevant to s

0 < weight < default if c is irrelevant to s

default weight if else.
(9)

For example, for CRP anomalies whose Signature contain-
ing NetworkingInternalOperationError, we assign

6

higher-than-default weight values to networking components
like NRP, RNM etc. Meanwhile, we assign minimal weight
to irrelevant components to penalize the contribution of these
anomalies to changes from those components.

To incorporate the domain knowledge in correlation, we
combine the temporal correlation score in (6), the spatial
correlation score in (8) and the weight table in (9) to get
a single measurement of the strength of relevancy between the
change and anomaly,

TSSi(e, a, s) = TSi(e, a, s) · SSi(e, a, s) ·W (s, ci(e)). (10)

Finally, we derive an overall score for change e on unit ui by
aggregating the scores in (10) over all anomaly instances and
all fault types, i.e.,

Scorei(e) =
∑

a∈A
ui
(e)

(s)

s∈{all fault types}

TSSi(e, a, s). (11)

By comparing Scorei(e) with a pre-defined threshold, the
correlation engine decides whether to flag change e on unit ui.
The threshold can be derived by training on historical catches,
whose value shall reflect the noise levels of the unit and the
fault signal.

3) Drive Build-Level Decision across Deployment Units:
The above use of temporal and spatial correlations and domain
knowledge would be sufficient for deriving accurate correlation
result, when only one component participates in constructing
the event set E . However, system-wide correlation requires a
holistic view of many components at a time, leading to concur-
rent deployments (i.e., deployments that occur simultaneously).
As is discussed in Section II-C, high concurrency level poses
a challenge in conducting high-quality correlation from a FDR
(false positive rate) control perspective. On the other hand, a
bad change may not necessarily manifest on all the units it gets
deployed to, resulting in potential false negatives. For example,
some change defects are setting-dependent, meaning that they
would manifest on a fault telemetry only when certain setting
requirement is met for the underlying unit.

Our solution is to consolidate correlation results across its
deployment units and derive a view at the component build
level, i.e., the (ci(e), v

i
(e)) level for change e. Consider four

component builds from control plane: (Component A, Build
A.1), (Component B, Build B.1), (Component C. Build C.1) and
(Component D, Build D.1). Among the four candidate builds,
Build A.1 and Build B.1 have defects while the other two
builds are of good quality. In Figure 6 we plot the distribution
scores Scorei(e) for these four builds across their respective
deployed units indexed by i. The two defective builds have
long right tails in the distributions of correlation scores, while
the the innocent ones have scores concentrated at zero. By
comparing scores across builds we can easily identify the bad
ones, i.e., those with long right tails. In practice, we may
define the flagging status of a component build by evaluating
the significance of those score instances on the right tail among
all the instances.

Fig. 6. Distribution of correlation score Scorei(e) across deployed units
{ui} for each component build of changes. Build A.1 from Component A and
Build B.1 from Component B have defects; their score distributions are right
tailed. The other two builds are innocent with scores concentrated at zero.

4) Correlation across Computing Layers: Another challenge
with traditional correlation techniques happens when we try
to correlate anomalies and changes across computing layers.
Because of the complexity and interconnected nature of Azure
system (see Figure 1), one component’s defect change may
interrupt its dependent component’s service, where the two
components may not operate at the same layer. For example,
a CRP code bug may cause unavailability of certain VM
provisioning service and manifest as spiked allocation failure
rates on AzAllocator service. Reversely, an AzAllocator bug
may manifest on CRP QoS as VM creation failures. In these
examples, CRP and AzAllocator are regional and zonal services,
respectively. In conducting system–wide correlation, we need
to equip Aegis with the capability of connecting platform
anomalies and changes across computing layers. We illustrate
our two-fold solution in Figure 7. First, we identify key
components in control plane and decompose fault signals
Fui(s) from a higher–layer component ui into the granularity
of a lower layer uik, such that Fui(s) ≜

∑
k F

uik(s) where
ui ≜ ∪kuik. Then we compute the correlation score at the
lower layer uik with (11). For example, we decompose CRP’s
regional fault signal into multiple zonal fault signals and
correlate them with the AzAllocator’s zonal deployments.
The choice of components requires a solid understanding of
control plane services. The signal decomposition is not trivial
because it involves connecting multiple telemetries to get proper
computing layer identifier for fault signals. Additionally, we
may project changes Euik occurring at a lower computing layer
uik to a higher layer ui (such that Eui ≜ ∪kE

uik), so that the
gap between computing layers is removed after the projection.
Hence, we can compute the correlation score at the higher
layer ui with (11). For example, we may project cluster-level
NSM deployments to the region level for correlating them with
CRP’s regional anomalies.

D. Validation Engine

The Validation Engine acts as a false positive filter between
the Correlation Engine and the Action Engine. The engine

7

Fig. 7. For fault signals and change events that are available at the same
layer, we directly conduct correlation between the two: region-to-region, zone-
to-zone, cluster-to-cluster. For components residing at different layers, we
may project changes from a lower layer to a higher one, e.g., zonal change
to the region level, before conducting correlation at the higher layer. As an
alternative, we may decompose fault signals of a high-layer component into
ones at a lower layer (e.g., decompose CRP regional faults to zonal faults),
before correlating with changes of a lower-layer component.

Fig. 8. Impact Evaluation Engine Architecture

consumes a set of build-level decisions and deems those
that fail the validation as false positives. The post-correlation
validation is accomplished via two independent checks. First,
the engine checks if correlated anomalies are expected (e.g.,
due to by disaster recovery drill or fabric controller failovers).
If a significant amount of the anomalies are explainable by
known sources of noise, the correlated component build is
shielded from being flagged to avoid false positives. The second
check leverages auxiliary signals (e.g., call stack signals and
services in Azure) to evaluate the accountability of the attributed
component for its correlated fault anomalies. The engine mines
insights from the call stack signals to determine if correlated
anomalous failures originate from another component other than
the attributed one. If that is the case, the attributed component
build will be removed from taking further action to avoid
false positives. After performing these validation checks, the
Validation Engine pass its decisions on to the Action Engine,
where only those attribution decisions that are not labelled as
false positives are acted upon.

E. Impact Evaluation Engine

This section describes the framework for evaluating the
impact of a bad change detected by the Correlation Engine.
The proposed Impact Evaluation Engine quantifies the change
impact in two steps: 1. impact assessment of the bad component
version in deployed units, and 2. counterfactual projection
of the impact on to-be-deployed units. In both steps, the
engine models two input signals: a Multi-Dimension Metrics
time series (which stores success and failure instances from
underlying health telemetry) and change events (see Figure 8).

1) Impact Assessment of the Bad Change in Deployed Units:
For s being an operation and ui being a unit (e.g., region),

we define the failure rate from time t1 to t2 in ui as observed
from pivot s as follows:

FR(ui, s, t1, t2) =

∑t2
t=t1

1{yi
t(s)=1}∑t2

t=t1

(
1{yi

t(s)=1} + 1{yi
t(s)=0}

) (12)

where 1z is the indicator function of z (i.e., 1z = 1 when z
holds, and 1z = 0 otherwise). Once the Correlation Engine
detects a bad change (tr, cr, vr) in region ur, we derive the
impact assessment as follows:

IA1(ur, s) = FR(ur, s, t
r, tr + wf)

− FR(ur, s, t
r − wb, t

r) (13)

IA2(ur, s) =
FR(ur, s, t

r, tr + wf)

FR(ur, s, tr − wb, tr)
(14)

where IA1(ur, s) and IA2(ur, s) are absolute and relative
the failure rate delta due to the bad component build version
(cr, vr), respectively, and wb and wf are a look-back window
and a look-forward window, respectively. We assess the impact
in every unit where this bad component version (cr, vr) is
deployed.

2) Counterfactual Projection of Impact onto To-Be-Deployed
Units: Now that we quantify the impact of a bad change on
deployed units, a nature question to ask is “how much more
impact would have been there had the bad change continue
getting deployed?” We answer this question with counterfactual
analysis. Counterfactual analysis studies the impact of an inter-
vention to the underlying entity by evaluating the counterfactual
outcome (i.e., outcome had the intervention not happened).
Counterfactual analysis involves identifying comparable entity
without an exposure to the intervention, modeling exposed and
non-exposed entities using pre-intervention data, and projecting
counterfactual outcomes between exposed/non-exposed entities
based on the learned model. The difference between the realized
and projected outcomes allows one to quantify the impact of
an intervention.

In our problem, the intervention is a deployed change on
deployed units. We strive to model counterfactual platform
performance (e.g., counterfactual fault rates) for to-be-deployed
units, had the change not been paused and continued getting
deployed to these units. To compute projected failure rates, we
cannot naively transform failure rate bounds (e.g., failure rate
percentiles) from deployed units linearly onto to–be deployed
units, since doing so does not guarantee the projected failure
rate ranging between 0 and 1. Instead, we model the failure
rate using the sigmoid function in (15) for it restricts the failure
rate to be within the range [0,1].

FR(ui, s, t1, t2) =
1

1 + exp−X(ui,s,t1,t2)
. (15)

The inverse sigmoid of the failure rate X(ui, s, t1, t2) can
be equivalently expressed as

X(ui, s, t1, t2) = log
FR(ui, s, t1, t2)

1− FR(ui, s, t1, t2)
. (16)

8

We compute the inverse sigmoid failure rate increment due to
the bad change (tr, cr, vr) in a deployed unit ur as follows:

∆X(ur, s) = X(ur, s, t
r, tr + wf)−X(ur, s, t

r − wb, t
r).
(17)

To get a lower bound ∆LX(ur, s) and an upper bound
∆UX(ur, s) of the inverse sigmoid failure rate increment, we
use the p/2th and (100− p/2)th percentiles of {∆X(ur, s)}r,
a set defined upon all deployed units {ur}.

For each to-be-deployed unit uk, we estimate a lower
bound F̃RL(uk, s, t

r, tr + wf) and an upper bound
F̃RU (uk, s, t

r, tr + wf) for the would-have-been failure rate
had the change been deployed to uk:

F̃RL(uk, s, t
r, tr + wf)

=
1

1 + exp−
(
X(uk,s,tr−wb,tr)+∆LX(ur,s)

) (18)

F̃RU (uk, s, t
r, tr + wf)

=
1

1 + exp−
(
X(uk,s,tr−wb,tr)+∆UX(ur,s)

) . (19)

Finally, we estimate the counterfactual impact of the
bad change on uk with lower bounds (i.e., ĨA1L(uk, s)

and ĨA2L(uk, s)) and upper bounds (i.e., ĨA1U (uk, s) and
ĨA2U (uk, s)) as follows:

ĨA1L(uk, s) = F̃RL(uk, s, t
r, tr + wf)

− FR(uk, s, t
r − wb, t

r) (20)

ĨA1U (uk, s) = F̃RU (uk, s, t
r, tr + wf)

− FR(uk, s, t
r − wb, t

r) (21)

ĨA2L(uk, s) =
F̃RL(uk, s, t

r, tr + wf)

FR(uk, s, tr − wb, tr)
(22)

ĨA2U (uk, s) =
F̃RU (uk, s, t

r, tr + wf)

FR(uk, s, tr − wb, tr)
. (23)

With these bounds, we end up with (100 − p)%

confidence intervals, (ĨA1L(uk, s), ĨA1U (uk, s)) and
(ĨA2L(uk, s), ĨA2U (uk, s)), for the failure rate increment in
uk had the change been deployed to uk. In practice, both
impact assessment and counterfactual projection are applied
only to operations s whose failure rate increment is statistically
significant from deployed units.

F. Decision and Action Engine
The final layer of Aegis is a Decision and Action Engine that

orchestrates its ”go” or ”no-go” decision with rich evidence to
component team. For each build-level no-go decision, Aegis
invokes a notification service to automatically generates ticket
incident to component team. For ongoing changes that are
deemed with severe customer impact, Aegis emits a stopping
signal to deployment orchestration services to automatically
pause the change for component team to manually investigate.
A fully automated service, the Decision & Action Engine
guarantees prompt mitigation of detected deployment issues.

IV. DISCUSSION

Aegis was developed and has been running on Azure control
plane over the past 12months. In this section, we evaluate its
business impact and provide sample catches in case studies.

A. Business Impact

Coverage and Scale Aegis currently covers 10 control
plane services for their code rollouts, including CRP, NRP,
and DiskRP, etc. It also covers dynamic configuration change
from CRP. These services range from region-level services
(e.g., CRP) to zone-level service (e.g., AzSM) to cluster-level
service (e.g., NSM). Over an 8-month period from January
2022 to August 2022, Aegis has made decisions for 8000+
deployments from the underlying components.

We prioritized covering components that takes a central
position in Azure stack (e.g., CRP), or on TDPR (Tenant
Deployment Performance & Reliability) path, because of their
great relevancy to key customer scenarios like single-instance
VM create, concurrent VM create etc.

In terms of platform health signals, Aegis covers a diverse
set of reliability and latency signals that are measured at
various levels: fleetwide, workload level and subscription level.
Major fleetwide signals under coverage include CRP and VM
Scale Set (VMSS) faults from their QoS telemetry, which is
processed at a scale of 1.2 million API call failures daily on
average. In addition to fleetwide metrics, Aegis also covers
real and synthetic customer workloads. For real workload,
Aegis covers reliability and latency metrics from Fast Disk
Attach & Detach workload. Synthetic workloads, like Aurora
workloads, are meant to replicate customer representative usage
of Azure service and are used to measure scenario experience
and identify platform gaps. Aegis covers the complete set of
40+ Aurora synthetic workloads.

A Scale-Out Tool The design of Aegis allows the common
infrastructure to be abstracted out, which greatly increases its
scalability to cover more components and signals. Setting up
a typical component-level deployment health monitor often
requires the implementation of the entire end-to-end flow. In
comparison, Aegis only requires adding signal-specific parts
(e.g., correlation runner for a new signal) to complete the
onboarding process. Aegis also provides a versatile interface
that can support platform signals of various forms, as is
evidenced by the diversity of the signals that Aegis covers.

Push Quality Left Component teams in Azure follow a safe
deployment policy to deploy change. Before a change gets to
production it needs to go through testing, stage, canary, pilot
environments. When a bad change occurs, the north star is to
catch it as early as possible. Aegis provides complementary
coverage to component-level deployment health monitors,
catching bugs that got missed by the first layer of protection. For
example, in March 2022 Aegis caught a CRP bug that missed
null-check handling when trying to remove a pipeline instance
in CRP’s release deployment. CRP’s component-level monitor
missed catching the bug because the bug only manifested under
certain setting. With the Aegis’ catch, CRP team stopped the
rollout and retook a new release after fixing a bug. In practice,

9

Aegis issued the majority of its no-go decisions in canary
environment, which contributes to Push Quality Left in Azure.

B. Case Studies

Case 1: Cross-Component Impact In January 2022, RNM
deployed build but missed a binary during the build process.
Once the release build got deployed, it interrupted CRP’s VMSS
creation and manifested as upticks of VMSS creation failures
with a specific exceptionType pointing to RNM issue. Aegis
correctly correlated the failure upticks from CRP telemetry with
the RNM rollout in East US Canary, and alerted RNM team.
With Aegis’ no-go signal, RNM team rolled back the build and
fixed the bug. Using its impact evaluation techniques, Aegis
found that the failure rate of VMSS create operation increased
by 148 folds under the regressed RNM build, compared to
before the rollout on the deployed region. For the remaining
undeployed regions, Aegis projected failure rate of the same
kind would increase by a range of (158, 169) folds at 95%
confidence level, had the RNM build reached those regions.
The prevented impact from the bad RNM deployment by Aegis
demonstrates the value of the Aegis system.

Case 2: Cross-Layer Impact In April 2022, Aegis alerted
AzSM team with their build rollout based on correlated
CRP failures impacting VM creation and VMSS deletion in
East US Canary. This decision was made using both cross-
component correlation and cross-layer correlation techniques,
for the AzSM rollout occurred at zone level. Aegis attributed
CRP’s fault spikes to AzSM, because the fault exceptionType
suggested the failures were caused by fabric issue. Upon
investigation by AzSM team, they found that AzCPGateway
introduced a bug resulting in ArgumentOutOfRangeException
when AzSM called its AzAllocator client, whose process
involves AzCPGateway. To mitigate the impact, AzCPGateway
downgraded to the previous version.This example demonstrates
the challenge posed by the complexity of Azure architecture
where many components depend on each other. In this catch,
Aegis alerted AzSM because it did not cover AzCPGateway
deployments. But the ticket successfully manifested the bug
and led to actions after AzSM’s investigation.

C. Generality of Aegis

Aegis at its core is a domain-knowledge driven attribution
and impact evaluation system using platform observational
data. Aegis can be generalized to other cloud or non-cloud
scenarios as an end-to-end system to solve the attribution
problem. Meanwhile, the success story of Aegis in Azure
may lend its design philosophy in other applications, e.g., the
adoption of Validation Engine to reduce noise in preliminary
decisions from the Correlation Engine.

The utilization of domain knowledge proves to be a key to
Aegis success by improving the explainability of a result in
the context of Azure cloud system. The abstraction of domain
knowledge may vary from application to application, but they
share a commonality that the domain knowledge shall encode
any prior knowledge about the system. While Aegis provides
some concrete examples of how domain knowledge is reflected

in the system (e.g., customized weights, validation with known
noise), it certainly does not restrict the specific form and use
of domain knowledge in a different application. The ultimate
goal with the use of domain knowledge is to make the results
not only correct from a machine learning perspective, but also
relevant in the context of an application.

V. EXPERIMENT

We evaluate the performance of Aegis using real code
rollouts from three Azure control plane components (CRP,
RNM and AzSM) between January and March of 2022. During
the time, the three components deployed over 60+ unique build
versions (i.e., unique v’s) via 700+ deployment instances (i.e.,
all changes e across units) at regional and zonal levels. Among
the components, CRP and RNM are regional services from
Compute and Network, respectively, while AzSM is a zonal
service. For simplicity we use reliability signals from CRP
fleetwide (i.e., ApiQosEvent) as the only source of fault for
correlation. We quantify Aegis performance in real world using
experiment results and show how the performance varies as we
adjust some of the novel practices in Aegis (e.g., the adoption of
Validation Engine, the use of fault signature weight). Because
of the difference in the scope of coverage (e.g., Gandalf [5] on
control plane is enabled as a component-level monitor hence it
only covers deployments from the underlying component), we
do not compare the performance between Aegis and Gandalf
here.

We collect pre-deployment faults in (5) over a 21-day
window before every rollout. The time-decay factor in (6)
is set to df(t1, t2) = ((t1 − t2)/6hour + 1)

−1. The window
size w in (8) is set to 14 days. The default value of fault
signature weight W (s, c) from (9) is set to 1, with higher-than-
default and lower-than-default weights being set to 10 and
0.01, respectively. The threshold for the aggregated score from
(11) is determined to reflect the noise level of ApiQosEvent
over the underlying environment of unit ui. In this experiment,
the canary environment is set with a threshold that is roughly
4 times that of the production environment. Aegis conducts
validation checks using Drill signal and Execution Graph in
its Validation Engine.

The performance of Aegis is summarized in Figure 9. With
all the features on, Aegis achieves roughly 80% for both
precision and recall on the data set. The false negatives
are missed because bugs in the bad rollouts manifested on
another platform fault signal that is not covered by Aegis
in this experiment. Had Aegis covered all the relevant fault
signals, the recall would have been perfect. From Figure 9,
removing the Validation Engine introduces false positives that
are avoidable with Drill and Execution Graph. The precision
decreases by 28.6% when removing the Validation Engine. The
recall does not change with or without the Validation Engine,
indicating that the engine does not introduce any false negative.
When removing signature weight W (s, c) from Aegis, both the
precision and recall are greatly impacted: precision drops by
37.5% and recall almost halves. The worsening decision quality
without signature weight shows the importance of reflecting

10

Fig. 9. Aegis performance on real rollouts from Azure control plane (CRP,
RNM and AzSM) between January and March of 2022. Aegis made decisions
on the rollouts using CRP fleetwide reliability signal. The delta of precision
and/or recall shows the value of key practices in Aegis, including the adoption
of Validation Engine and the use of Signature Weight in conducting correlation.

domain knowledge about component and fault relevance in
conducting correlation analysis.

VI. RELATED WORK

Impact assessment of change event. The impact of change
event has attracted considerable attention in cloud computing
systems. Previous work conducts time series anomaly detection
approach, such as PCA [27], CUSUM [28], iSST [29], and
LSTM [30], to detect change events based on the monitoring
data, However, all these approaches focus on the change event
detection rather than the change event attribution between the
change event and its behaviors reflected in the monitoring
data. Funnel [31], [32] adopts difference in differences, and
Gandalf [5] use spatial and temporal correlation to blame bad
changes. The correlation among service components and the
correlation at multiple granularities, which are common and
complex in cloud computing systems, are not considered by
these correlation approaches.
Counterfactual analysis. Counterfactual analysis can establish
a causal relationship between treatments and results [33], which
has been used in many domains. For example, DBShelock [34]
used a causal model to predict database performance issues.
Diagnosing missing events in distributed systems adopts the
provenance graph [35], [36]. These studies adopt the concept
of counterfactual analysis in different scenarios, and we also
illustrate the importance of using counterfactual analysis to
attribute control plane changes in the cloud systems.

VII. CONCLUSION

Under the setting of large-scale cloud infrastructure, we
present the Aegis system which is an end-to-end analytical ser-
vice for attributing and mitigating change event impact across
computing layers and service components on Azure control
plane. Aegis follows a top-down design and leverages a domain
knowledge-driven correlation algorithm to attribute platform
signals to change events, and a counterfactual projection model
to quantify change event impact to customer. Over the past 12
months, it has caught several bad deployments across control

plane components and layers and guarded Azure service for
its customers.

VIII. ACKNOWLEDGEMENT

The authors thank Ryan Lingg, Tewbesta Alemayehu, Samiul
Saeef, Theo Shiao, Prateek Gangwal, Daniele Maso, Ze Li
and Randolph Yao for their contribution through their valuable
feedbacks.

REFERENCES

[1] Amazon, “Using cloudwatch anomaly detection,” 2017, https://docs.aws.
amazon.com/cloudwatch/index.html.

[2] J. C. Mogul and J. Wilkes, “Nines are not enough: Meaningful metrics
for clouds,” in Proceedings of the Workshop on Hot Topics in Operating
Systems. ACM, 2019, pp. 136–141.

[3] X. Zhang, J. Kim, Q. Lin, K. Lim, S. O. Kanaujia, Y. Xu, K. Jamieson,
A. Albarghouthi, S. Qin, M. J. Freedman et al., “Cross-dataset time
series anomaly detection for cloud systems,” in 2019 USENIX Annual
Technical Conference (USENIX ATC 19), 2019, pp. 1063–1076.

[4] X. Sun, W. Luo, J. T. Gu, A. Ganesan, R. Alagappan, M. Gasch, L. Suresh,
and T. Xu, “Automatic reliability testing for cluster management
controllers,” in 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), 2022, pp. 143–159.

[5] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh, X. Yang, Q. Lin,
Y. Wu, S. Levy et al., “Gandalf: An intelligent, end-to-end analytics
service for safe deployment in large-scale cloud infrastructure,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), 2020, pp. 389–402.

[6] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “Continuous incident triage for large-scale online service
systems,” in Proceedings of the 34th ASE International Conference on
Automated Software Engineering. IEEE/ACM, 2019, pp. 364–375.

[7] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online
service systems,” in Proceedings of the 41st ICSE-SEIP International
Conference on Software Engineering: Software Engineering in Practice.
IEEE/ACM, 2019, pp. 111–120.

[8] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou, L. Yang,
J. Sun, Z. Xu et al., “Towards intelligent incident management: why we
need it and how we make it,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1487–1497.

[9] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?
lessons from hundreds of service outages,” in Proceedings of the Seventh
ACM Symposium on Cloud Computing, 2016, pp. 1–16.

[10] T. McCarthy, “Aws outage brings dr strategies back into focus,”
https://www.techtarget.com/searchdisasterrecovery/news/252511325/
AWS-outage-brings-DR-strategies-back-into-focus.

[11] J. Chen, Z. Wu, Z. Wang, H. You, L. Zhang, and M. Yan, “Practical
accuracy estimation for efficient deep neural network testing,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 29, no. 4, pp. 1–35, 2020.

[12] C. Lou, C. Chen, P. Huang, Y. Dang, S. Qin, X. Yang, X. Li, Q. Lin,
and M. Chintalapati, “Resin: A holistic service for dealing with memory
leaks in production cloud infrastructure,” in 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 22), 2022, pp.
109–125.

[13] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang, “Capturing and
enhancing in situ system observability for failure detection,” in 13th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), 2018, pp. 1–16.

[14] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing, M. Yang,
J. Tong, and Q. Zhang, “Time-series anomaly detection service at
microsoft,” in Proceedings of the 25th SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 2019, pp. 3009–3017.

[15] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 27th ESEC/FSE Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 2019, pp. 807–817.

11

https://docs.aws.amazon.com/cloudwatch/index.html
https://docs.aws.amazon.com/cloudwatch/index.html
https://www.techtarget.com/searchdisasterrecovery/news/252511325/AWS-outage-brings-DR-strategies-back-into-focus
https://www.techtarget.com/searchdisasterrecovery/news/252511325/AWS-outage-brings-DR-strategies-back-into-focus

[16] Y. Liu, X. Zhang, S. He, H. Zhang, L. Li, Y. Kang, Y. Xu, M. Ma,
Q. Lin, Y. Dang, S. Rajmohan, and D. Zhang, “Uniparser: A unified log
parser for heterogeneous log data,” in Proceedings of the Web Conference.
ACM, 2022, p. 1893–1901.

[17] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, X. Qu et al., “Syslog processing for switch failure diagnosis and
prediction in datacenter networks,” in 2017 IEEE/ACM 25th International
Symposium on Quality of Service (IWQoS). IEEE, 2017, pp. 1–10.

[18] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni,
B. Zong, H. Chen, and N. V. Chawla, “A deep neural network for
unsupervised anomaly detection and diagnosis in multivariate time series
data,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 1409–1416.

[19] S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, Y. Zhang et al., “Prefix: Switch failure prediction in datacenter
networks,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 2, no. 1, pp. 1–29, 2018.

[20] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings of the
26th WWW World Wide Web Conference, 2018, pp. 187–196.

[21] D. Park, Y. Hoshi, and C. C. Kemp, “A multimodal anomaly detector
for robot-assisted feeding using an lstm-based variational autoencoder,”
Robotics and Automation Letters, vol. 3, no. 3, pp. 1544–1551, 2018.

[22] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and
H. Chen, “Deep autoencoding gaussian mixture model for unsupervised
anomaly detection,” International Conference on Learning Representa-
tions, 2018.

[23] M. Ma, S. Zhang, J. Chen, J. Xu, H. Li, Y. Lin, X. Nie, B. Zhou,
Y. Wang, and D. Pei, “Jump-starting: Multivariate time series anomaly
detection for online service systems,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21), 2021, pp. 413–426.

[24] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu, C. Luo,
Y. Li, N. Qiu et al., “Diagnosing root causes of intermittent slow queries
in cloud databases,” Proceedings of the VLDB Endowment, vol. 13, no. 8,
pp. 1176–1189, 2020.

[25] M. Ma, Y. Liu, Y. Tong, H. Li, P. Zhao, Y. Xu, H. Zhang, S. He,
L. Wang, Y. Dang, S. Rajmohan, and Q. Lin, “An empirical investigation
of missing data handling in cloud node failure prediction,” in Proceedings
of the European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE), 2022, pp. 1453 –
1464.

[26] Y. Liu, H. Yang, P. Zhao, M. Ma, C. Wen, H. Zhang, C. Luo, Q. Lin,
C. Yi, J. Wang et al., “Multi-task hierarchical classification for disk failure
prediction in online service systems,” in Proceedings of the SIGKDD
Conference on Knowledge Discovery and Data Mining (SIGKDD). ACM,
2022, pp. 3438–3446.

[27] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using traffic
feature distributions,” ACM SIGCOMM computer communication review,
vol. 35, no. 4, pp. 217–228, 2005.

[28] A. A. Mahimkar, H. H. Song, Z. Ge, A. Shaikh, J. Wang, J. Yates,
Y. Zhang, and J. Emmons, “Detecting the performance impact of upgrades
in large operational networks,” in Proceedings of the ACM SIGCOMM
2010 Conference, 2010, pp. 303–314.

[29] M. Ma, S. Zhang, D. Pei, X. Huang, and H. Dai, “Robust and rapid
adaption for concept drift in software system anomaly detection,” in 2018
IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2018, pp. 13–24.

[30] N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu, W. Zhang,
K. Sui, and D. Pei, “Identifying bad software changes via multimodal
anomaly detection for online service systems,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021, pp.
527–539.

[31] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-based
services,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, 2015, pp. 1–13.

[32] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, Z. Zang, X. Jing, and
M. Feng, “Funnel: Assessing software changes in web-based services,”
IEEE Transactions on Service Computing, 2016.

[33] K. von Prince, “Counterfactuality and past,” Linguistics and Philosophy,
vol. 42, no. 6, pp. 577–615, 2019.

[34] D. Y. Yoon, N. Niu, and B. Mozafari, “Dbsherlock: A performance
diagnostic tool for transactional databases,” in Proceedings of the 2016
International Conference on Management of Data, 2016, pp. 1599–1614.

[35] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The good,
the bad, and the differences: Better network diagnostics with differential
provenance,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 115–128.

[36] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing
missing events in distributed systems with negative provenance,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4, pp. 383–
394, 2014.

12

	Introduction
	Background and Motivation
	Azure Control Plane
	Change Events in Azure Control Plane
	Challenges with System-wide Correlation

	Aegis System Design
	System Overview
	Signal Collections
	Correlation Engine
	Temporal and Spatial Correlations
	Incorporate Fault Relevancy with Component into Correlation
	Drive Build-Level Decision across Deployment Units
	Correlation across Computing Layers

	Validation Engine
	Impact Evaluation Engine
	Impact Assessment of the Bad Change in Deployed Units
	Counterfactual Projection of Impact onto To-Be-Deployed Units

	Decision and Action Engine

	Discussion
	Business Impact
	Case Studies
	Generality of Aegis

	Experiment
	Related Work
	Conclusion
	Acknowledgement
	References

