
CONAN: Diagnosing Batch Failures for Cloud
Systems

Liqun Li‡, Xu Zhang‡, Shilin He‡, Yu Kang‡, Hongyu Zhango, Minghua Ma‡, Yingnong Dang†,
Zhangwei Xu†, Saravan Rajmohan⋄, Qingwei Lin‡∗, Dongmei Zhang‡

‡Microsoft Research, †Microsoft Azure, ⋄Microsoft 365, oThe University of Newcastle

Abstract—Failure diagnosis is critical to the maintenance
of large-scale cloud systems, which has attracted tremendous
attention from academia and industry over the last decade. In
this paper, we focus on diagnosing batch failures, which occur
to a batch of instances of the same subject (e.g., API requests,
VMs, nodes, etc.), resulting in degraded service availability and
performance. Manual investigation over a large volume of high-
dimensional telemetry data (e.g., logs, traces, and metrics) is
labor-intensive and time-consuming, like finding a needle in a
haystack. Meanwhile, existing proposed approaches are usually
tailored for specific scenarios, which hinders their applications in
diverse scenarios. According to our experience with Azure and
Microsoft 365 – two world-leading cloud systems, when batch
failures happen, the procedure of finding the root cause can
be abstracted as looking for contrast patterns by comparing two
groups of instances, such as failed vs. succeeded, slow vs. normal,
or during vs. before an anomaly. We thus propose CONAN,
an efficient and flexible framework that can automatically ex-
tract contrast patterns from contextual data. CONAN has been
successfully integrated into multiple diagnostic tools for various
products, which proves its usefulness in diagnosing real-world
batch failures.

I. INTRODUCTION

Failures of cloud systems (e.g., Azure[8], AWS[7], and
GCP [6]) could notoriously disrupt online services and impair
system availability, leading to revenue loss and user dissatis-
faction. Hence, it is imperative to rapidly react to and promptly
diagnose the failures to identify the root cause after their
occurrence [10], [54]. In this work, we focus on diagnosing
batch failure, which is a common type of failure widely
found in cloud systems. A batch failure is composed of many
individual instances of a certain subject (e.g., API requests,
computing nodes, VMs), typically within a short time frame.
For example, a software bug could cause thousands of failed
requests [42]. In cloud systems, batch failures tend to be severe
and usually manifest as incidents [20], which cause disruption
or performance degradation.

Batch failure in cloud systems could be caused by reasons
including software and configuration changes [32], [48], power
outages [1], disk and network failures [43], [31], etc. To
diagnose batch failures, engineers often retrieve and carefully
examine the contextual data of the instances, such as their
properties (e.g., version or type), run-time information (e.g.,
logs or traces), environment and dependencies (e.g., nodes or
routers), etc. Contextual information can often be expressed in

∗Qingwei Lin is the corresponding author of this work.

the form of attribute-value pairs (AVPs) denoted as Attribute-
Name=“Value”. Let’s say a request emitted by App APP1 is
served by a service of APIVersion V1 hosted on Node N1.
Then, the contextual information of this specific request can be
expressed with 3 AVPs, i.e., App=“APP1”, APIVersion=“V1”,
and Node=“N1”. If a batch of failed API requests occurs
due to the incompatibility between a specific service version
(say APIVersion=“V1”) and a certain client application (say
App=“APP1”). Then, the combination of {APIVersion=“V1”,
App=“APP1”} is what engineers aim to identify during failure
diagnosis.

Identifying useful AVPs from the contextual data is often
“case-by-case” based on “expert knowledge” for “diverse” sce-
narios according to our interview with engineers. Fortunately,
a natural principle usually followed by engineers is to compare
two groups of instances, such as failed vs. succeeded, slow vs.
normal, or during vs. before an anomaly, etc. The objective is
to look for a set of AVPs that can significantly differentiate
the two groups of instances. We call such a set of AVPs a
contrast pattern. However, manual examination of contrast
patterns, which requires comparison over a large volume of
high-dimensional contextual data, is labor-intensive, and thus
cannot scale up well. In one scenario (Sec. V-C), it takes up
to 20 seconds to visualize only one data pivot, while there are
hundreds of thousands of AVP combinations. Recently, many
failure diagnosis methods have been proposed (summarized
in Table I). These approaches have been shown to be useful
in solving a variety of problems. However, they are rigid in
adapting to new scenarios, so developers have to re-implement
or even re-design these approaches for new scenarios.

In this paper, we summarize common characteristics from
diverse diagnosis scenarios, based on which we propose a uni-
fied data model to represent various types of contextual data.
We propose a framework, namely CONAN, to automatically
search for contrast patterns from the contextual data. CONAN
first transforms diverse input data into a unified format, and
then adopts a meta-heuristic search method [17] to extract
contrast patterns efficiently. Finally, a consolidation process is
proposed, by considering the concept hierarchy in the data, to
produce a concise diagnosis result.

The main advantage of CONAN over existing methods [51],
[10], [44], [40] is that it can be applied flexibly to various
scenarios. CONAN supports diagnosing both availability and
performance issues, whereas existing work as summarized in
Table I only supports one of them. In CONAN, it is flexible

to measure the significance of patterns in differentiating the
two instance groups. For example, CONAN can find patterns
that are prevalent in abnormal instances but rare in normal
ones, or patterns with a significantly higher latency only during
the incident time. Moreover, CONAN supports multiple data
types including tabular telemetry data and console logs. We
have integrated CONAN in diagnostic tools used by Azure
and Microsoft 365 – two world-leading cloud systems. In the
last 12 months, CONAN had helped diagnose more than 50
incidents from 9 scenarios. Its advantages have been affirmed
in real-world industrial practice, greatly saving engineers’ time
and stopping incidents from impacting more services and
customers.

To summarize, our main contributions are as follows:
• To the best of our knowledge, we are the first to unify

the diagnosis problem in different batch failure scenarios
into a generic problem of extracting contrast patterns.

• We propose an efficient and flexible diagnosis framework
CONAN, which can be applied to diverse scenarios.

• We integrate CONAN in a variety of typical real-world
products and share our practices and insights in diagnos-
ing cloud batch failures from 5 typical scenarios.

The rest of this paper is organized as follows. In Sec. II,
we introduce the background of batch failure and demonstrate
an industrial example. Sec. III presents the data model and
problem formulation. The proposed framework CONAN and
its implementation are described in Sec. IV. We show real-
world applications in Sec. V. At last, we discuss CONAN in
Sec. VI, summarize related work in Sec. VIII, and conclude
the paper in Sec. IX.

II. BACKGROUND AND MOTIVATING EXAMPLE

For a cloud system, when a batch of instances (e.g., requests,
VMs, nodes) fail, the monitoring infrastructure can detect
them immediately, create an incident ticket, and send alerts
to on-call engineers to initiate the investigation. Although
various automated tools (e.g., auto-collecting exceptional logs
and traces) have been built to facilitate the diagnosis process,
how to quickly diagnose the failure remains the bottleneck,
especially due to the excessive amount of telemetry data.

A. A Real-world Scenario: Safe Deployment

The Exchange service is a large-scale online service in
Microsoft 365, which is responsible for message hosting
and management. To reduce the impact caused by defective
software changes, the service employs a safe deployment
mechanism, similar to what is described in [5], [16], [32]. That
is, a new build version needs to go through several release
phases before meeting customers. Due to the progressive
delivery process, multiple build versions would co-exist in the
deployment environment, as shown in Fig. 1, where nodes with
different colors are deployed with different versions. Client
applications interact via REST API requests.

A batch of failed requests would trigger an incident. The
key question for safe deployment is: Is the problem caused by
a recent deployment or by ambient noise such as a hardware

Exchange

Cluster

AG

V1 V2 V3

APP1

APP2

APP3

Fig. 1. Multiple build versions co-exist during service deployment life-cycle.
Nodes with different colors correspond to different build versions.

failure or a network issue? To answer this question, a snapshot
of contextual data during the incident is collected. The data
typically contains tens of millions of instances of requests
for this large-scale online service. Each instance represents
a failed or succeeded request. A request has many associated
attributes. To give a few examples, it has the APP attribute that
denotes the client application which invokes this API, and the
APIVersion that shows the server-side software build version
of the invoked API. There are attributes, such as Cluster,
Availability Group (AG), and Node, that describe the location
where requests are routed and served1. We aim to answer the
aforementioned question based on the collected request data.

The idea behind their existing practice is intuitive. If the in-
cident is caused by a build version, then its failure rate should
be higher than other versions. For example, if APIVersion V3
has a significantly higher failure rate than V1 and V2, the
production team suspects that this is a deployment issue caused
by V3. Then, engineers deep dive into the huge code base of
the suspected version. It could waste a lot of time before they
can confirm that this is not a code regression if the initial
direction given by the safe deployment approach is wrong.

This approach sheds light on diagnosing batch failures by
comparing the occurrence of an attribute (APIVersion in our
example) among two categories of instances, i.e., failed and
succeeded requests. However, it has two drawbacks. First, it
only concerns the APIVersion attribute while neglecting other
attributes. A large number of failed requests emerging on a
specific version might be caused by problems such as node or
network failures, resulting in misattributing a non-deployment
issue to a build version problem. Second, a batch failure could
be caused by a combination of multi-attributes containing a
certain version, as will be discussed in Sec. V-A. Then, the
failure rate of any single version might not be significantly
higher than other versions, leading to misidentification of the
build version problem. Either way would lead to a prolonged
diagnosis process.

The production team could certainly enrich their method
by adding heuristic rules to cover more cases. However, it is
ad-hoc and error-prone. In summary, we need a systematic
solution to diagnose batch failures for safe deployment.

1One cluster consists of multiple AGs, and one AG is composed of 16
nodes.

TABLE I
COMMONALITIES IN DIFFERENT DIAGNOSIS WORK

Failed instances Contextual data Contrast class diagnostic output
Requests [42], [12], [52] Attributes and components on

the critical paths or call graphs
Slow vs. normal requests or
failure vs. successful requests

Attribute combinations, e.g., {Cluster=
“PrdC01”, API= “GET”}, problematic
components, or structural mutations

Software crash reports [41],
[19], [38], [33], [47]

Attributes or traces, e.g., OS,
modules, navigation logs,
events, etc.

Crash vs. non-crash or different
types of crashes

Attribute combinations, e.g., {OS=“Android”,
Event=“upload”} or event sequence or func-
tions

OS events [49] Driver function calls and status
along the traces

Slow vs. normal event traces Combination of drivers and functions, e.g.,
{fv.sys!Func1, fs.sys!Func2, se.sys!Func3}

Virtual disks [51] VM, storage account, and net-
work topology

Failure vs. normal disks Problematic component, e.g., a router or a stor-
age cluster

Customer reports [35] Attributes, e.g., country, feature,
etc.

Reports during anomaly vs. be-
fore anomaly

Attribute combinations, e.g., {Country=“India”,
Feature=“Edit”}

System operations [39], [14] System logs or attributes, e.g.,
server, API, etc.

Slow vs. normal operations Attribute combinations, e.g., {Latency ¿ 568ms,
Region=“America”} or a set of indicative logs

System KPIs [53], [25] System logs Logs during vs. before the KPI
anomaly

A set of indicative logs

III. BATCH FAILURE DIAGNOSIS

In this section, we first summarize commonalities among
the practices of diagnosing batch failures. We then abstract
the data model and formulate the failure diagnosis problem as
a problem of identifying contrast patterns.

A. Commonalities in Scenarios

The first step in solving the batch failure diagnosis problem
is to summarize the commonalities among diverse scenarios.
However, the circumstances of the failures can appear so dif-
ferent that it is challenging to determine their commonalities.
We have carefully analyzed the various cases encountered
in practice, such as the safe deployment case introduced
previously, and thoroughly reviewed existing research work.
Table I presents a summary of literature studies on failure
diagnosis. These studies focus on notably different scenarios,
but they share the following commonalities:

• They are all failures that affect a batch of instances
of the same subject (such as requests, software crashes,
disks, and so on), instead of on a single or a handful of
instances.

• Each failure instance has a collection of attributes that
describe the context in which it occurred.

• Besides the instances involved in each batch failure
(called Target class), we can always find another set
of instances with different statuses or performance levels
(called Background class) for comparison.

• The diagnosis output, based on the instances and their
attributes, could be represented as a combination of
attribute-value pairs (AVPs).

In our motivating scenario, the background class of in-
stances are the requests that were successfully processed
during the incident time. When the batch failure is about
performance issues, such as high latency in request response
time, we take the requests before the latency surge as the
background class. By comparing the attributes of two sets of
instances, we can identify patterns, namely contrast patterns,

which can help narrow down the search for the root cause of
the failure.

The commonalities in data characteristics and diagnosis
process suggest that a generic approach could be effective in
addressing the batch failure diagnosis problem. Since each
scenario may look quite different, the framework must be
flexible enough to benefit both current and future scenarios.

B. Contrast Pattern Identification

Contrast patterns in two contrast classes often demonstrate
statistically significant differences. For instance, one pattern is
more prevalent in the target class than the background class,
or instances of a pattern have a higher average latency in the
target class than in the background class.

The contrast pattern extraction can thus be formulated as a
search problem. To achieve so, an objective function should be
defined first, and then maximized during the following search
process. We denote the objective function as fB,T (p), which
quantitatively measures the difference of the pattern p in the
two classes {B, T}. B and T stand for background class and
target class, respectively. The goal of the search process is to
find the pattern p̂ which maximizes the objective function, i.e.,

p̂ = argmax
p

fB,T (p) (1)

The objective function can vary across different diagnosis
scenarios, as will be demonstrated in the practical examples
in Sec. V. We now show the objective function, in Eq. (2),
for the safe deployment example in Sec. II-A. The objective
function is defined as the proportion difference between the
failed and succeeded requests of any specific pattern p.

fB,T (p) =
|ST (p)|
|ST |

− |SB(p)|
|SB |

(2)

| · | denotes the number of instances, ST (p) and SB(p)
are target-class and background-class instances, respectively,
which contain the pattern p. The intuition is that the pattern
p should be more prevalent in the failed requests than in the
succeeded requests.

CONAN

Meta-Heuristic Search

Data Transformation

Consolidation

NoSQL Database

Objective

Function

fB,T(p)
Contrast
PatternsUsers

Cloud Native Deployment

CONAN
Database

CONAN Diagnosis Report
Pattern 1
Pattern 2
...

Notify
REST API

Web Portal

Fig. 2. An Overview of CONAN.

IV. THE PROPOSED SYSTEM

Several requirements are imposed for designing a generic
framework for batch failure diagnosis. It needs to support
various input data, search contrast patterns efficiently, and
provide easy-to-interpret results. To fulfill these requirements,
we propose a batch failure diagnosis framework, namely
CONAN. Fig. 2 shows an overview of our system which
consists of three components.

• Data transformation: We convert input data into our
unified data model, i.e., instances. Each instance is rep-
resented with a set of AVPs, a class label, and optionally
its metric value (e.g., latency).

• Meta-heuristic search: Following a user-specified objec-
tive function, contrast patterns are extracted by employing
a meta-heuristic search algorithm.

• Consolidation: The search could incur duplication, i.e.,
multiple patterns describing the same group of instances.
We design rules to consolidate the final output patterns
to make them concise and easy to interpret.

In most scenarios, the output patterns are consumed by
engineers or system operators. They may perform follow-up
tasks to identify the actual root cause for triage, mitigation,
and problem-fixing.

A. Data Transformation

In this section, we introduce the practices of transforming
diverse diagnosis data into a unified format. An instance is an
atomic object on which our diagnosis framework is performed.
For example, in the safe deployment scenario, the diagnosis
aims to find out why a batch of requests fail, and a request is
thus treated as one instance. Similarly, as depicted in Table I,
an instance could be a software crash report, an OS event, a
virtual disk disconnection alert, a customer report, etc.

Attribute-value pair (AVP) is the data structure to denote
the contextual data for diagnosis. In practice, there could be a
large number of attributes. These attributes are usually scoped
based on engineer experience to avoid involving unnecessary
attributes or missing critical ones. For instance, we only care
about the Client Application, APIVersion, Node, etc., whose
issues can directly result in a request success rate drop for safe
deployment. As batch failures could occur from time to time,
the attributes may be adjusted gradually. In the beginning,
engineers obtain a list of attributes based on their knowledge.

In subsequent practice, new attributes are added or existing
ones are removed depending on the situation. One can refer
to the Contextual data column in Table I for typical attributes
chosen for various batch failure diagnosis tasks.

A contrast class is assigned for each instance, i.e., target
class and background class. The target class labels instances
of our interest. For scenarios such as safe deployment, each
instance has its status, namely, success or failure, then the
status can naturally serve as the contrast class label. Some-
times, only “failed” instances are collected and the diagnosis
purpose is to find out why a sudden increase of failures occurs
(e.g., an anomaly). In this scenario, temporal information is
used to decide the contrast class. We assign the target class
to instances occurring during the anomaly duration and the
background class to instances before the anomaly period. We
shall present one such example in Sec. V-D.

Multiple attributes may form a hierarchical relationship. In
our safe deployment example in Sec. II-A, we say Node is a
low-level attribute compared to AG (Availability Group) be-
cause one AG contains multiple Nodes. Similarly, Node is also
a lower-level attribute to APIVersion, as one APIVersion is
typically deployed to multiple nodes while one node has only
one APIVersion. For convenience, we denote the hierarchical
relationship in a chain of attributes, e.g., Node −→ AG −→
Cluster. The chain starts from a low-level attribute (left side)
and ends at a high-level attribute (right side). The hierarchical
chains can be automatically mined from the input data because
high-level attributes and their low-level attributes form one-
to-many relationships, e.g., one AG corresponds to multiple
nodes. CONAN provides a tool to analyze the hierarchical
relationship in the input data for users. The hierarchy chains
are then used for subsequent steps.

B. Meta-heuristic Search

To search for the pattern as desired, a straightforward way is
to evaluate every possible pattern exhaustively with the objec-
tive function. However, the method is clearly computationally
inefficient. Though we can explore all combinations of 1 or 2
AVPs in a brute-force way, we cannot rigidly limit the pattern
length in practice. Thus, contrast pattern extraction desires a
more systematic search algorithm.

In this work, we adopt a meta-heuristic search [17] frame-
work but customized it especially to mine the contrast pattern.
Compared to existing pattern mining [41], [19], [33] or model
interpretation [51], [14] methods, heuristic search is more
flexible to tailor for different scenarios. Meta-heuristic search
is an effective combinatorial optimization approach. The input
to the search framework is the data prepared as discussed in
the above section. The output is a list of contrast patterns
optimized toward high objective function values. The search
framework features the following components:

• A contrast pattern list, denoted as Lc.
• A current in-search pattern, denoted as p.
• A set of two search operations (i.e., ADD and DEL).
• An objective function fB,T (p) that evaluates a pattern p.

Null
Add

Fig. 3. Illustration of the search process where each uppercase character
represents an AVP. In each step, the current pattern p (with black line color)
randomly selects an operation (ADD or DEL) to transit to a new pattern.
Patterns along the search path with the highest objective function values are
kept in the contrast pattern list Lc.

The search process starts from an empty pattern Null and goes
through many iterations to find patterns optimizing towards the
objective function, as illustrated in Fig. 3.

1) The Search Process: In each iteration, we randomly
apply an operation to the current pattern to generate a new
pattern. ADD means that we add an AVP to the current pattern;
DEL means that we delete one AVP from the current pattern.
When adding an AVP, we avoid the AVPs with attributes
already presented in the current pattern. Once we have a new
pattern, we use the objective function to evaluate its score. We
maintain the best contrast patterns found in a fixed-size list Lc,
which is the algorithm output. If the list Lc is not full or the
score is higher than the minimum score of stored patterns in
Lc, we add or update the pattern to Lc.

The search process is essentially finding desired patterns
w.r.t the objective function, as defined in Eq. (2) for our
example scenario. The search ends when a static or dynamic
exit criterion is satisfied. In static criteria, we could end the
search process after a predefined number of steps or a time
interval. In dynamic criteria, the search stops if the pattern list
Lc does not update for certain steps.

One advantage of meta-heuristic search is that it endorses
the early-stopping mechanism naturally. We can end the pro-
cess early as required and meanwhile obtain reasonably great
results, which is very helpful in diagnosis scenarios under hard
time constraints. Besides, we could explicitly limit the length
of the pattern during the search process. Once the current
pattern reaches the max length, we prevent the search process
from ADD operations.

2) The Scoring Function: When applying the ADD opera-
tion to the current pattern, simply choosing a random AVP is
inefficient. Instead, an AVP should be added if it could benefit
the new pattern, e.g., achieving a higher objective function
score. In meta-heuristic search [55], the algorithm typically
explores the whole neighborhood of the current state to find
the next state that maximizes the objective function, which
however is not computationally affordable due to the huge
pattern space. As an approximation, we introduce a scoring
function [26], [46] fs(AVP) for each AVP. Specifically, we
inherit the objective function and calculate the score by

fs(AVP) = fB,T ({AVP}) (3)

where {AVP} is a pattern with only one attribute-value pair.
When we need to pick an AVP to add to the current pattern,
we choose the one with the highest score. Though the pattern
space is large due to combination explosion, the number
of AVPs is much smaller. Therefore, we can calculate a
lookup table for the score of each AVP beforehand. In our
implementation, we adopt the BMS (Best from Multiple
Selections) mechanism [18], which selects the top few AVPs
with the highest scores and then samples one from them with
probability proportional to their scores.

It is easy for a search algorithm to be stuck in a local search
space if we add AVPs in a purely greedy fashion, i.e., always
pick the AVP with the highest score. We thus maintain a tabu
list, inspired by the Tabu search algorithm [21], which tracks
recently explored AVPs to avoid revisiting them in a cycling
fashion. The tabu list size plays a key role in balancing the
exploration and exploitation of the search process.

Recall that we have mined the hierarchy chains in Sec.
IV-A. When the current pattern contains an AVP of a low-
level attribute (e.g., Node), it makes no sense to add an AVP
of high-level attributes (e.g., AG or Cluster). We thus enforce
this rule during the search process to reduce the search space.

C. Consolidation
The output of the meta-heuristic search (Sec. IV-B) is a

list of patterns sorted by their objective function values in
descending order. We identify two situations that could lead
to pattern redundancy, which could cause confusion to the user.
They are shown in the following examples:

• p1: {App=“APP1”, APIVersion=“V1”},
p2: {APIVersion=“V1”}

• p1: {Node=“N01”}, p2: {AG=“AG01”}2

In each example, we have two patterns p1 and p2. We use
S(p1) and S(p2) to denote the sets of instances containing
p1 and p2, respectively. In the first example, p2 is actually a
subset of p1 given each pattern is a set of AVPs. Thus, p1
is describing a smaller set of instances compared to p2, i.e.,
S(p1) ⊆ S(p2). This is also the case for the second example
due to the existence of the hierarchy chain: Node −→ AG −→
Cluster. Patterns composed of low-level attributes are more
specific than patterns with high-level attributes.

Under both circumstances, it could cause confusion if both
p1 and p2 are presented to the user. Taking the second situation
as an example, users may wonder whether this is an AG-scale
issue or only a single-node issue. Once we identify the redun-
dancy situations, we apply rules to deduplicate and retain only
the major contributor pattern in the result list. Specifically,
we pick the pattern associated with the minimum number of
instances if two patterns achieve comparable objective function
scores, which provides more fine-grained hints to localizing
the root cause.

D. System Implementation
We implement CONAN as a Python library for easy reuse

and customization. We design the objective scoring function

2Assume Node “N01” resides in AG “AG01”

as a callback function, which can be specified according to the
target scenario. CONAN also integrates multiple commonly-
used objective functions for user selection. We abstract the
search interface and provide our meta-search algorithm de-
scribed in IV-B as a concrete implementation. Users thus can
implement the interface with other search algorithms. At last,
we provide a set of data processing tools to accommodate
various data formats. The library is implemented based on
Python 3.7 and will be open-sourced after paper publication
with sample datasets.

We also pack CONAN as a cloud-native application in
Azure as shown in Fig. 2. We adopt the serverless function
service, which enables easy scalability and maintenance. In
this application, we support both REST APIs and a GUI
web portal. The former could be seamlessly integrated into
production pipelines. Contextual data is prepared and stored
in a NoSQL database. The diagnosis is carried out in an async
fashion and the results could later be retrieved from a SQL
database. On the other hand, users could manually upload
some test datasets for ad-hoc explorations via the GUI web
portal. It then shows a report when the diagnosis is done.

The raw input data can sometimes be huge. For instance, in
the safe deployment case, the input data is a table of requests,
where each row is a single request with various attribute
values. It is common to see tens of millions of requests per
hour, resulting in input files over 10 GB. It is computationally
expensive to process large files. Therefore, we support an
aggregate data format where rows with the same set of AVPs
are grouped into one row, with an additional Count column.
According to our evaluation, the aggregate format reduces
the data size by up to 100x in our scenarios. For diagnosing
performance issues, the raw data cannot be directly aggregated
in the aforementioned way as each row has its metric value
(e.g., the response latency). CONAN supports aggregating
performance data into buckets [4]. For instance, requests with
the same set of AVPs are distributed into buckets of < 100ms,
100− 500ms, 500− 1000ms, etc., and their counts.

V. REAL-WORLD PRACTICES

In this section, we present several representative scenarios
that are common across cloud systems. We describe the typical
practices of applying CONAN, which consists of 4 steps: (1)
define the instances and collect their attributes; (2) set up the
two contrast classes and the objective function; (3) extract the
attribute hierarchy chains; (4) apply CONAN to search for
contrast patterns. We will introduce the scenarios one by one
in the following sections.

A. Safe Deployment

The background of safe deployment has been discussed in
Sec. II-A. The problem formulation is detailed in Sec. III-B.
In this section, we describe how to apply CONAN and present
its evaluation results.

a) Applying CONAN: Each request is regarded as an
instance. The target class and background class are the failed
requests and succeeded requests during the incident period,

respectively. The objective function is defined in Eq. (2) which
is the proportion difference of the pattern between the two
classes.

Intuitively, if one pattern is common in the target class but
rare in the background class, it is likely related to the root
cause. The attribute hierarchy chains for the safe deployment
scenario are extracted from data, as follows:

• Node −→ AG −→ Cluster
• Node −→ OS
• Node −→ APIVersion

The hierarchy chains are used for search and consolidation as
introduced in Sec. IV-B and IV-C, respectively.

b) Results: We run CONAN side-by-side with the ex-
isting diagnosis tool (described in the existing practice in
Sec. II-A) for about 3 months. For each detected incident,
CONAN determines it as a deployment issue as long as the
resulting pattern with the highest objective function score
contains an AVP of APIVersion. Then we triage the incident
to the corresponding team with the found APIVersion to verify
its correctness. The results are shown in Table II.

TABLE II
SAFE DEPLOYMENT RESULTS

TP TN FP FN Precision Recall

Existing approach 12 0 15 2 44.4% 85.7%
CONAN 14 12 3 0 82.4% 100%

There were a total of 29 cases during the 3-month period.
We can see all deployment issues and their corresponding
problematic APIVersions were successfully captured by CO-
NAN. In contrast, their existing approach missed two (i.e., 2
False Negatives) because it could not recognize multi-attribute
problems combined with bad build versions. More than that,
the main problem of the existing approach lies in its high
False-Positive rate. A total of 15 non-deployment issues were
misidentified, most of which were due to AG or node-level
hardware issues. We note that CONAN also had 3 False
Positives, which were caused by issues such as configuration
or network issues that happen to co-exist with the deployment
process of certain build versions. CONAN can be further
improved by involving more relevant attributes. Thanks to
the high efficiency of our meta-heuristic search algorithm,
CONAN takes ∼ 20s even for 108 data size.

Example: The Exchange service once encountered an in-
creasing number of failed requests on a REST API at the early
stage of integration with CONAN. Most failures were concen-
trated on a recently deployed API version (V1). The on-call
engineers spent several hours investigating V1 but still could
not find anything wrong. CONAN was manually triggered
and a contrast pattern {App=“APP1”, APIVersion=“V1”} was
reported. With this information, engineers spent less than half
an hour engaging the right response team. The code change in
service version V1 caused a class casting failure in the event
handler in the client APP1. That explained why most failed
requests were emitted by APP1 to the specific APIVersion V1.

B. VM Live Migration Blackout Performance

a) Background: Live migration of VMs [3] is a common
practice in Azure for various objectives such as ensuring
higher availability by moving VMs from failing nodes to
healthy ones, optimizing capacity by defragmentation, im-
proving efficiency by balancing node utilization, and regular
hardware/software maintenance. During the live migration
process, a VM moves from its source node to a destination
node when the VM is running except for a short period,
namely blackout. The customer’s tasks are frozen during the
blackout period. So, it is critical to minimize this duration.

The blackout period of a live migration session consists
of tens of components. The blackout duration is thus the
sum of the execution time of all components. The Compute
team logs end-to-end blackout durations as well as the time
breakdown for each component. An incident is fired once there
is significant growth momentum of the blackout duration.

b) Existing Practice: When an incident is reported, the
Compute team collects the top 10 cases with the longest
blackout durations. The engineer reviews the cases and takes
various diagnosis actions. The blackout duration could be
affected by many factors such as the VM type, node hardware,
OS, etc. Therefore, the diagnosis is very challenging and time-
consuming. It could take days to find out the actual root cause.

c) Applying CONAN: Each component has its execution
time for each live migration session. To diagnose a perfor-
mance issue, we define the target class and background class
as components belonging to live migration sessions during and
before the anomaly period, respectively. Each live migration
session has attributes such as VM type and the node/cluster/OS
properties of the source/destination node. Intuitively, we intend
to discover the pattern where there is a clear rising trend of
the execution time during the anomaly period. We therefore
define the objective function as shown in Eq. (4). P90%(·) is
a function to calculate the 90th percentile3 of the execution
time of a set of instances.

fB,T (p) = P90% (ST (p))− P90% (SB(p)) (4)

d) Examples: We describe applying CONAN for two
performance incidents:

Incident-1 One day a significant execution time increase
was monitored. CONAN found that the pattern with the high-
est objective function value contained a subscription name,
i.e., {Component=“A”, Cluster=“c1”, Subscription=“Sub2”}.
After some investigations, the engineer found that a thread
from the VMs of this customer, who subscribed hundreds of
VMs, blocked component A of the live migration process from
obtaining the network status at the nodes, and thus, caused a
significant delay. Figure 4 (left) shows the curves of the daily
90th percentile of the execution time of component A for all
live migration processes (the solid line) as well as for 3 specific
subscriptions (the dashed lines), respectively. We can clearly
see the increase in the overall execution time is driven by that
of “Sub2”.

3We use the 90th percentile because it is also used for monitoring.

0 100 200 300 400 500 600
Norm Time

0

200

400

600

800

1000

90
%

til
e

of
 e

xe
c

tim
e

Overall Sub1 Sub2 Sub3

0 50 100 150 200 250
Norm Time

0

100

200

300

400

90
%

til
e

of
 e

xe
c

tim
e

Overall Type1 Type2 Type3

Fig. 4. Examples for diagnosing live migration performance issues – Case
1 (left) and Case 2 (right). The green and orange rectangles represent the
background class and target class, respectively.

Incident-2 For another incident, CONAN found that the
pattern with the highest objective function value contained
a specific VM type (a.k.a SKU), i.e., {Component=“B”,
Type=“D2 V2”}, which means that this specific VM type
had a sudden increase in Component B’s execution time.
After some investigations, it was discovered that a code bug
in the VM agent, associated with the detected VM type,
resulted in unexpected lock contention. We show the daily
90th percentile of component B’s execution time for all live
migration processes (the solid line) as well as for 3 specific
VM Types (the dashed lines) in Fig. 4 (right), respectively.

C. Diagnosis for Substrate

a) Background: Substrate is a large-scale management
service at Microsoft 365 that runs on hundreds of thousands
of machines globally. Substrate hosts data for services like
Exchange and SharePoint. Two categories of telemetry data
are collected. The first category is the request data accessing
Substrate management APIs. There are several roles in Sub-
strate such as FrontDoor (FD), Café, BackEnd (BE), etc. Café
is a stateless front end that handles client connections and
routes requests to backend servers. A request goes through
a path that consists of several roles, e.g., FD ⇒ Café ⇒
BE. The end-to-end latency and more fine-grained latencies
of each role or between different checkpoints for each request
are monitored. The second category of data is the telemetry
data collected from the underlying machines, i.e., the CPU and
memory utilization of critical service functions.

Service teams configure alerting rules for the latency and
availability metrics. Any abnormal upward trend in latency
or a significant drop in availability will trigger an alert. In
practice, one major cause is code regression or configuration
changes. As Substrate is made up of many components, it is
challenging to quickly identify the actual cause.

b) Existing Practice: Once an alert is fired, engineers
manually try various data pivots to check if the detected issue
is more concentrated in a narrower scope, e.g., a specific
datacenter or process. After that, they could dig deeper into
the code to find out the actual root cause. However, due to the
sheer volume of data being processed, visualizing a data pivot
can take over 20 seconds, not to mention the huge number of
attribute combinations.

c) Applying CONAN for latency issues: Each request is
regarded as an instance. The contrast classes and the objective

0 20 40 60 80 100 120
Norm Time

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
 p

ro
ce

ss
in

g
tim

e

Regional
AppId="app1",
ProcessName="process",
Caller="code.cs:183:function"

0.6

0.7

0.8

0.9

1.0

No
rm

 a
va

ila
bi

lit
y

Availability

Fig. 5. The correlation between availability drop and regional CPU processing
time surge. The processing time associated with the pattern was the dominat-
ing factor. The green and orange rectangles represent the background class
and target class, respectively.

function are defined the same way as in Sec. V-B. The goal
is to discover the pivot, i.e., a pattern, where the requests
contribute most significantly to the latency increase.

Example: One day a latency spike is detected for a specific
API. After several hours, engineers find that most of the
prolonged requests came from a region S, but could not further
narrow down the scope. By running CONAN, we obtain a
pattern of {region=“S”, type=“Customer”}. The interesting
thing is that, according to the design, the API should skip the
“Customer” type of users and return a constant immediately.
However, after checking the code, the engineer found that a
recent change accidentally modified the logic. The engineer
admitted that it would take a long time to manually figure out
this problem as it was due to unexpected behavior. Finally, a
pull request was submitted to fix this issue, after which the
latency increase disappeared.

d) Applying CONAN for availability issues: Many avail-
ability issues are caused by high CPU usage. To find out
why the CPU usage is unexpectedly high, we apply CO-
NAN by setting up the background and target classes as
CPU processing time records before and during the anomaly
period, respectively. Each CPU processing time record has the
ClusterId, MachineId, AppId, ProcessName, Caller, etc. The
objective function is defined as Eq. (5), which is the difference
in the sum of CPU processing time values in the two classes.

fB,T (p) =
∑

CPUT (p)−
∑

CPUB(p) (5)

Example: In one past period of time, engineers observed
that the availability of a specific API dropped occasionally.
The root cause was difficult to pinpoint as it was not a fail-
stop issue where the problem persists for a prolonged period
of time. After some investigation, the engineer suspected
that high CPU utilization was the cause as the drops in
availability correlated well with surges in CPU processing
time. Therefore, he applied CONAN to localize the possi-
ble cause by analyzing CPU processing time data. CONAN
found a pattern of {AppId=“app1”, ProcessName=“process”,
Caller=“code.cs:183:function”}, with details shown in Fig. 5.
After further investigation, the engineer realized that a recent
configuration change led to an expensive CPU cost increase

for a function in “code.cs”. Interestingly, the cost increase was
only triggered by a special workload, and therefore it only
occurred from time to time and was hard to diagnose.

D. VM Unexpected Reboot

a) Background: VM unexpected reboot is one of the
most common incident types in large-scale clouds like Azure.
Like other modern cloud providers [51], [2], Azure adopts
the storage-computing decoupling architecture. When a VM
accesses its disks, it is unaware that the disks are remotely
mounted, called virtual hard disks. One major category of
VM unexpected reboots is due to disk disconnection. Disk
disconnection could be caused by a variety of reasons such as
a misconfiguration on the host OS, a failure on the network
path connecting the VM and its disks, or a capacity throttling
in the storage cluster.

In Azure, the Storage team constantly monitors the number
of VM reboots caused by disk disconnection and needs to
handle the incident when an anomalous spike is detected.
We analyzed a 6-month period’s incidents processed by the
Storage team. Only ∼ 10% were caused by storage issues.
Therefore, it becomes a pain point for the Storage team, and
they want to quickly transfer incidents to other teams if the
root cause is not in storage.

b) Existing Practice: Each VM reboot caused by disk
disconnection generates a record with main attributes such as
NodeId, customer subscription Id, Compute/Storage cluster,
Datacenter, network routers, etc. The storage team monitors
the number of VM reboots for each datacenter. When an
incident is detected, a triage workflow is triggered which aims
to quickly localize the failure. The existing practice is based
on one simple rule – if all failures are within one Storage
cluster while distributed across multiple Compute clusters,
it indicates a Storage issue. Similarly, they conclude it is a
compute issue if all failures happen within a Compute cluster.
This simple rule works well when the required conditions
are met. However, it lacks robustness against ambient noise.
In fact, random VM reboots are ambient in the cloud, and
therefore, the perfect one-to-many relationship rarely exists.
The simple rule can only cover less than 3% of incidents in
the 6-month period. As a result, the engineer has to manually
examine the logs for all remaining ones.

c) Applying CONAN: We treat each VM reboot event as
one instance. The background class and target class are the VM
reboot events that occur before and after the incident start time,
respectively. The reboot events before the incident represent
the ambient noise. The objective function is defined in Eq.
(6). ST (p) and SB(p) are the sets of instances containing
pattern p in the target class and background class, respectively.
This objective function is used to capture the situation that the
number of VM reboot events associated with pattern p has a
significant emerging trend.

fB,T (p) = |ST (p)| − |SB(p)| (6)

The attribute hierarchy chains in this scenario are:

TABLE III
OUTPUT PATTERNS FOR DIAGNOSING VM REBOOT INCIDENTS

ID Pattern Evidence Team
1 {TOR=“tor1”} Single TOR failure PhyNet
2 {NodeId=“n1”} Single node failure HostNet
3 {Storage=“s1”} Failure in a storage cluster Storage
4 {Compute=“c1”} Failure in a compute cluster Compute
5 {Sub = “sub1”,

Compute=“cc1”}
Failure due to a subscription in a
compute cluster

Compute

6 {Sub = “sub1”,
Storage=“sc1”}

Failure due to a subscription in a
storage cluster

Storage

7 {DC=“dc1”} Failure across datacenters Unknown

• NodeId −→ Storage Cluster −→ Datacenter
• NodeId −→ TOR −→ Compute Cluster −→ Datacenter

d) Results: We evaluated CONAN with a total of 51
historical incidents with groundtruth from their postmortems.
CONAN could precisely triage 46 out of 51 incidents (∼ 90%)
to the responsible team as summarized in Table III. Among
the incidents, 31 cases (pattern 1) were due to a single TOR
failure, which should be recovered by the Physical Networking
team. Eight cases (pattern 2) were single-node network issues
handled by the Host Networking team (e.g., cable disconnec-
tion, attack, etc.). Three cases (pattern 4, 5) were caused by
maintenance issues or abnormal subscription behaviors in a
compute cluster, and another three cases (pattern 3, 6) due to
extreme traffic load for a certain subscription in one storage
cluster, which should be processed by the Storage team. For
the remaining 6 cases, CONAN reports a pattern with a single
datacenter (pattern 7), in which 4 were caused by a region-
level DNS issue and 1 by a flawed configured virtual network.
Though CONAN was unable to anticipate the responsible team
for these cases, pattern 7 implies large-scale failures across
datacenters which usually require collaborative investigations
from multiple teams. CONAN takes only tens of milliseconds
for each VM reboot incident, which is negligible.

E. Node Fault

a) Background: Virtual machines are hosted on physical
computing nodes. Node faults have various root causes such
as hardware faults, OS crashes, host agent failures, network
issues, etc. Due to the high complexity of cloud systems,
quick identification of the failure category has become a key
challenge for operators and developers.

Monitors are set up to detect the upsurge in the number
of nodes reporting the same fault code. Each fault code
represents a certain coarse-grained failure category, such as
network timeout, failed resource access, permission issue, etc.
For further digging out the root cause of triggered alerts,
console logs on each node are collected from various sources
such as OS, hardware, host agent, network, etc. Each log
contains the node ID, a timestamp, and a severity level such as
INFO, WARNING, EXCEPT or ERROR, and raw messages.
However, due to the verbose details and large-scale data
volume, the clues of the current issue are usually buried in
massive logs, and thus, it can take long to locate logs that are
indicative of the root cause of a node fault incident.

b) Existing Practice: The current process of exploring
the logs is ad-hoc and inefficient. Once a node fault incident
is fired, the on-call engineers manually sample a set of faulty
nodes. Then, they usually pull some logs with severe verbosity
levels (such as EXCEPT and ERROR) and examine these logs
line by line or search for keywords based on their domain
expertise.

c) Applying CONAN: Each node is regarded as one
instance. We set up the background and target classes as
healthy nodes and nodes reporting the fault code during the
incident period, respectively. Both healthy nodes and faulty
nodes are from the same cluster.

We intended to discover a set of logs that are more prevalent
in the target class (i.e., nodes reporting the fault code) than
the background class (i.e., healthy nodes). We thus used a
similar objective function as defined in Eq. (2). However,
console log messages are text-like data, which are not cat-
egorical variables as in previous scenarios. A console log is
typically composed of a constant template and one or more
variables. For instance, the log message “Node[001], Received
completion, Status:0x0” contains two variables underlined. To
compare different log sets, we remove the variables using a log
parser [45]. For example, the aforementioned log message is
converted into a template of “Node[*], Received completion,
Status: *”. Only the constant tokens are retained and the
changing variables are replaced with ‘*’s. All logs with the
same template are assigned the same log Id. CONAN is
applied to identify a set of log Ids to differentiate the faulty
and healthy nodes.

d) Example: We encountered an incident about the time-
out of a critical workflow on a group of nodes. This workflow
involves multiple production teams. Any incorrect operation,
such as a bad deployed package and certificate expiration,
could trigger the timeouts. Logs were collected from the target
and background nodes, respectively. CONAN was used to
find a group of suspicious logs to report to the engineer.
Soon, the engineer inferred that the incident was caused by
a certificate file missing as CONAN reported one INFO log
“Remove certificate for Service:host.pfx”. It turned out that
the certificate was removed from service resources by mistake.
One interesting lesson learned from this case is that the most
critical logs are not necessary EXCEPTs or ERRORs.

VI. PRACTICAL EXPERIENCES

a) Deployment model: We provide two ways to integrate
CONAN into diagnostic tools. The first is to upload data to our
service and consume the report in an asynchronous fashion.
The second is to integrate our Python lib into an existing
pipeline. The common practice is that a service team (owner
for diagnosing certain batch failures) first evaluates CONAN
using a few cases with our web service. After confirming
the effectiveness of CONAN, the service team integrates our
Python lib, which is more customizable and efficient, into their
automation pipeline that is triggered by incidents.

b) The batch size: Cloud incidents often involve tens
or thousands of instances, e.g., nodes, VMs, or requests. A

failure of a single or a few instances would not be escalated to
an incident because of fault-tolerant mechanisms. Admittedly,
a minimal number of instances are needed to guarantee the
statistical significance of the objective function. In CONAN,
we include the contrast patterns together with the number of
instances involved in the output. The user can thus understand
the significance of the patterns.

c) Continuous attribute values: In some scenarios, the
attribute value is continuous rather than categorical. Data
discretization has been extensively studied in the literature
[30], [36], which could convert the raw continuous value into
discrete buckets. The discretization could be also based on
domain knowledge. For instance, in one of our real-world
scenarios, the file size is a continuous value that typically
ranges from less than 1 KB to several GB. According to expert
knowledge, the file size is categorized into tiny (< 1K), small
(1K-64K), median (64K-1M), large (1M-10M), and ex-large
(>10M).

d) Handling temporal patterns: Performance metrics
usually exhibit temporal patterns. For example, the response
latency varies in a peak/valley pattern during the day/night
period, respectively. When we need to contrast two sets of
data, we need to incorporate the temporal pattern. For instance,
when the target class is during the peak hours, we should
set up the background class also from peak hours for a fair
comparison.

e) Relationship with A/B testing: A/B testing is a widely
used technique for testing. The key idea of A/B testing is to
proactively control the environment so that typically only one
variable has two versions in the experiments. In this work,
we also have two classes of data, i.e., target and background,
which however are based on passive observations. Because the
environment is not controlled, we do not know which variable
we should test. Moreover, the root cause could be a combina-
tion of multiple variables. Thus, we use a combinatorial search
algorithm to find the contrast pattern.

VII. THREATS TO VALIDITY

The threats to validity mainly come from the early problem
definition stage when we need to select the input data for
diagnosis, set up the contrast classes, and specify the right
objective function as discussed. Misconfigurations in practice
may hinder the effectiveness of CONAN. For instance, the
input data may be wrongly aggregated leading to important
information missing; root-cause-indicating attributes may be
excluded from our analysis or the objective function may be
inappropriately configured, leading to failure in finding sig-
nificant contrast patterns. In conclusion, the successful appli-
cation of CONAN relies on engineer experiences to correctly
formulate the diagnosis problem as discussed in Sec. III-B. To
reduce the threats, we introduce several example scenarios as
the best practices, so that the users can avoid common mistakes
when applying CONAN to diagnose their new batch failure
problems. In this paper, we carefully selected and detailed
the application processes of CONAN in a systematic fashion
for all typical scenarios. These scenarios are diverse types of

instances, methodologies for setting up contrast classes, objec-
tive functions for availability, and performance problems. We
have followed this practice to onboard several new diagnosis
scenarios in an effective way.

VIII. RELATED WORK

Diagnosis in cloud systems is a broad topic that has
been studied extensively in the literature. Due to the hard-
ware/software complexity of the modern cloud, it is critical to
understand its behaviors by using the end-to-end tracing infras-
tructure. Among those works, Ding et al. [50] proposed using a
proactive logging mechanism to enhance failure diagnosis. X-
ray [13] compared different application control flows to iden-
tify the root cause of performance issues. Canopy [29] showed
the benefit of end-to-end tracing to assist human inference.
Dan et al. [9] collected metrics from controlled experiments
in a live serving system to diagnose performance issues. In
our work, CONAN also leverages the tracing infrastructure in
Azure and Microsoft 365 to collect contextual information for
batch failure diagnosis.

Batch failure is a common type of failure in the cloud
and large-scale online services, which has attracted substan-
tial attention as summarized in Table I. Although inferring
diagnosis hints by setting two contrast categories is not new,
this work is the first time to provide a generic framework in
industrial scenarios. There is also some diagnosis work [23],
[28], [10], [37] that leverages the service dependency graph or
invocation chain to localize the root cause. Other work [27],
[11], [24] proposes to use agents in distributed systems for
failure detection and localization.

Contrast pattern [15], [22] has been proposed over two
decades. Because of its differentiation nature, the idea of
contrast pattern analysis has been applied to various diagnosis
problems. Yu et al. [49] use contrast analysis for identifying
the root cause of slow Window event traces. FDA [33],
Sweeper [38], CCSM [41], and Marco et al. [19] apply
association rule mining to find suspicious behavior in software
crash reports. The primary drawback of existing work is
that they usually target a very specific scenario, and thus,
hard to be extended to similar situations. Besides, extracting
contrast patterns is a computationally challenging problem.
CONAN adopts a meta-heuristic search framework inspired
by combinatorial test generation [34].

IX. CONCLUSION

In this work, we propose CONAN, a framework to assist
the diagnosis of batch failures, which are prevalent in large-
scale cloud systems. At its core, CONAN employs a meta-
heuristic search algorithm to find contrast patterns from the
contextual data, which is represented by a unified data model
summarized from various diagnosis scenarios. We introduce
our practices in successfully integrating CONAN into multiple
real products. We also compare our search algorithm with
existing approaches to show its efficiency and effectiveness.

REFERENCES

[1] Amazon AWS Power Outage. https://www.bleepingcomputer.
com/news/technology/amazon-aws-outage-shows-data-in-the-cloud.
-is-not-always-safe/. [Online; accessed 08-July-2022].

[2] Amazon EC2 Root Device Volume. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/RootDeviceStorage.html. [Online; accessed
08-May-2022].

[3] Azure VM Live Migration. https://azure.microsoft.com/en-us/
blog/improving-azure-virtual-machine-resiliency-with-predictive-ml.
-and-live-migration/. [Online; accessed 10-Sep-2022].

[4] Performance Buckets in Application Insights. https://azure.microsoft.
com/en-us/blog/performance-buckets-in-application-insights/l. [Online;
accessed 08-May-2022].

[5] Safe deployment practices. https://docs.microsoft.com/en-us/devops/
operate/safe-deployment-practices. [Online; accessed 03-Sep-2022].

[6] Google Cloud Status Dashboard. https://status.cloud.google.com/
summary, 2021. [Online; accessed 28-Apr-2021].

[7] AWS Post-Event Summaries. https://aws.amazon.com/cn/
premiumsupport/technology/pes/, 2022. [Online; accessed 28-
Apr-2022].

[8] Azure status history. https://status.azure.com/en-us/status/history/, 2022.
[Online; accessed 28-Apr-2022].

[9] Dan Ardelean, Amer Diwan, and Chandra Erdman. Performance
analysis of cloud applications. In NSDI, 2018.

[10] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang (Harry) Liu, Jitu Padhye, Boon Thau Loo, and Geoff
Outhred. 007: Democratically finding the cause of packet drops. In
NSDI, 2018.

[11] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff
Outhred. Taking the blame game out of data centers operations with
netpoirot. In SIGCOMM, 2016.

[12] Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard Meg-
ginson, Ayse K. Coskun, and Raja R. Sambasivan. An Automated,
Cross-Layer Instrumentation Framework for Diagnosing Performance
Problems in Distributed Applications. In SoCC, 2019.

[13] Mona Attariyan, Michael Chow, and Jason Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in production software.
In OSDI, 2012.

[14] Chetan Bansal, Sundararajan Renganathan, Ashima Asudani, Olivier
Midy, and Mathru Janakiraman. Decaf: Diagnosing and triaging per-
formance issues in large-scale cloud services. In ICSE, 2020.

[15] Stephen D. Bay and Michael J. Pazzani. Detecting change in categorical
data: Mining contrast sets. In KDD, 1999.

[16] Ranjita Bhagwan, Rahul Kumar, Chandra Sekhar Maddila, and
Adithya Abraham Philip. Orca: differential bug localization in large-
scale services. In OSDI, 2018.

[17] Christian Blum and Andrea Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison. ACM Comput.
Surv., 35(3), 2003.

[18] Shaowei Cai. Balance between complexity and quality: Local search for
minimum vertex cover in massive graphs. In IJCAI, 2015.

[19] Marco Castelluccio, Carlo Sansone, Luisa Verdoliva, and Giovanni
Poggi. Automatically analyzing groups of crashes for finding corre-
lations. In ESEC/FSE, 2017.

[20] Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu Zhang, Hui
Xu, Yangfan Zhou, Li Yang, Jeffrey Sun, Zhangwei Xu, Yingnong
Dang, Feng Gao, Pu Zhao, Bo Qiao, Qingwei Lin, Dongmei Zhang,
and Michael R. Lyu. Towards intelligent incident management: Why
we need it and how we make it. In ESEC/FSE, 2020.

[21] Bhaskar Dasgupta, Xin He, Tao Jiang, Ming Li, John Tromp, Lusheng
Wang, and Louxin Zhang. Handbook of combinatorial optimization,
1998.

[22] Guozhu Dong and Jinyan Li. Efficient mining of emerging patterns:
Discovering trends and differences. In KDD, 1999.

[23] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. Seer: Leveraging big data to navi-
gate the complexity of performance debugging in cloud microservices.
In ASPLOS, 2019.

[24] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
Zhi Wei Lin, and Varugis Kurien. Pingmesh: A Large-scale system for
data center network latency measurement and analysis. In SIGCOMM,
2015.

[25] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R
Lyu, and Dongmei Zhang. Identifying impactful service system prob-
lems via log analysis. In ESEC/FSE, 2018.

[26] Holger Hoos and Thomas Sttzle. Stochastic Local Search: Foundations
& Applications. Morgan Kaufmann Publishers Inc., 2004.

[27] Peng Huang, Jacob R Lorch, Lidong Zhou, Chuanxiong Guo, and
Yingnong Dang. Capturing and Enhancing In Situ System Observability
for Failure Detection Capturing and Enhancing In Situ System Observ-
abil. In OSDI, 2018.

[28] Hiranya Jayathilaka, Chandra Krintz, and Rich Wolski. Performance
monitoring and root cause analysis for cloud-hosted web applications.
In WWW, 2017.

[29] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. Canopy: An end-to-end performance tracing and analysis
system. In SOSP, 2017.

[30] Randy Kerber. Chimerge: Discretization of numeric attributes. In AAAI,
1992.

[31] Sebastien Levy, Randolph Yao, Youjiang Wu, Yingnong Dang, Peng
Huang, Zheng Mu, Pu Zhao, Tarun Ramani, Naga Govindaraju, Xukun
Li, et al. Narya: Predictive and adaptive failure mitigation to avert
production cloud vm interruptions. In OSDI, 2020.

[32] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj
Singh, Xinsheng Yang, Qingwei Lin, Youjiang Wu, Sebastien Levy,
and Murali Chintalapati. Gandalf: An intelligent, end-to-end analytics
service for safe deployment in large-scale cloud infrastructure. In NSDI,
2020.

[33] Fred Lin, Keyur Muzumdar, Nikolay Pavlovich Laptev, Mihai-Valentin
Curelea, Seunghak Lee, and Sriram Sankar. Fast dimensional analysis
for root cause investigation in a large-scale service environment. SIG-
METRICS Perform. Eval. Rev., 2020.

[34] Jinkun Lin, Chuan Luo, Shaowei Cai, Kaile Su, Dan Hao, and Lu Zhang.
TCA: An Efficient Two-Mode Meta-Heuristic Algorithm for Combina-
torial Test Generation. In ASE, 2015.

[35] Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, and Dongmei Zhang.
iDice: Problem identification for emerging issues. In ICSE, 2016.

[36] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash.
Discretization: An enabling technique. Data Min. Knowl. Discov., 2002.

[37] Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang,
and Ping Wang. Automap: Diagnose your microservice-based web
applications automatically. In WWW, 2020.

[38] Vijayaraghavan Murali, Edward Yao, Umang Mathur, and Satish Chan-
dra. Scalable statistical root cause analysis on app telemetry. ICSE-SEIP,
2021.

[39] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured
comparative analysis of systems logs to diagnose performance problems.
In NSDI, 2012.

[40] Jamie Pool, Ebrahim Beyrami, Vishak Gopal, Ashkan Aazami, Jayant
Gupchup, Jeff Rowland, Binlong Li, Pritesh Kanani, Ross Cutler, and
Johannes Gehrke. Lumos: A library for diagnosing metric regressions
in web-scale applications. In KDD, 2020.

[41] Rebecca Qian, Yang Yu, Wonhee Park, Vijayaraghavan Murali, Stephen
Fink, and Satish Chandra. Debugging crashes using continuous contrast
set mining. In ICSE-SEIP, 2020.

[42] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat,
Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu,
and Gregory R. Ganger. Diagnosing performance changes by comparing
request flows. In NSDI, 2011.

[43] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl
Deng, Dongming Bi, and Dong Xiang. Netbouncer: Active device and
link failure localization in data center networks. In NSDI, 2019.

[44] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,
Karl Deng, Dongming Bi, Dong Xiang, and Implementation Nsdi.
NetBouncer: Active Device and Link Failure Localization in Data Center
Networks. In NSDI, pages 1–14, 2019.

[45] Xuheng Wang, Xu Zhang, Liqun Li, Shilin He, Hongyu Zhang, Yudong
Liu, Lingling Zheng, Yu Kang, Qingwei Lin, Yingnong Dang, Saravan
Rajmohan, and Dongmei Zhang. SPINE: A Scalable Log Parser with
Feedback Guidance. In FSE, 2022.

[46] Yiyuan Wang, Shaowei Cai, and Minghao Yin. Local search for
minimum weight dominating set with two-level configuration checking
and frequency based scoring function. In IJCAI, 2017.

https://www.bleepingcomputer.com/news/technology/ amazon-aws-outage-shows-data-in-the-cloud. -is-not-always-safe/
https://www.bleepingcomputer.com/news/technology/ amazon-aws-outage-shows-data-in-the-cloud. -is-not-always-safe/
https://www.bleepingcomputer.com/news/technology/ amazon-aws-outage-shows-data-in-the-cloud. -is-not-always-safe/
https://docs.aws.amazon.com/AWSEC2/ latest/UserGuide/RootDeviceStorage.html
https://docs.aws.amazon.com/AWSEC2/ latest/UserGuide/RootDeviceStorage.html
https://azure.microsoft.com/en-us/blog/improving-azure-virtual-machine-resiliency-with-predictive-ml. -and-live-migration/
https://azure.microsoft.com/en-us/blog/improving-azure-virtual-machine-resiliency-with-predictive-ml. -and-live-migration/
https://azure.microsoft.com/en-us/blog/improving-azure-virtual-machine-resiliency-with-predictive-ml. -and-live-migration/
https://azure.microsoft.com/en-us/blog/performance-buckets-in-application-insights/l
https://azure.microsoft.com/en-us/blog/performance-buckets-in-application-insights/l
https://docs.microsoft.com/en-us/devops/operate/safe-deployment-practices
https://docs.microsoft.com/en-us/devops/operate/safe-deployment-practices
https://status.cloud.google.com/summary
https://status.cloud.google.com/summary
https://aws.amazon.com/cn/ premiumsupport/technology/pes/
https://aws.amazon.com/cn/ premiumsupport/technology/pes/
https://status.azure.com/en-us/status/history/

[47] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim.
Crashlocator: Locating crashing faults based on crash stacks. In ISSTA,
2014.

[48] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long
Jin, and Shankar Pasupathy. Early Detection of Configuration Errors to
Reduce Failure Damage. In OSDI, 2016.

[49] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. Comprehending
performance from real-world execution traces: A device-driver case. In
ASPLOS, 2014.

[50] Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M. Lee,
Xiaoming Tang, Yuanyuan Zhou, and Stefan Savage. Be conservative:
Enhancing failure diagnosis with proactive logging. In OSDI, 2012.

[51] Qiao Zhang, Guo Yu, Chuanxiong Guo, Yingnong Dang, Nick Swanson,
Xinsheng Yang, Randolph Yao, Murali Chintalapati, Arvind Krish-
namurthy, and Thomas Anderson. Deepview: Virtual Disk Failure

Diagnosis and Pattern Detection for Azure. In NSDI, 2018.
[52] Xu Zhang, Chao Du, Yifan Li, Yong Xu, Hongyu Zhang, Si Qin, Ze Li,

Qingwei Lin, Yingnong Dang, Andrew Zhou, et al. HALO: Hierarchy-
aware Fault Localization for Cloud Systems. In SIGKDD, 2021.

[53] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu
Zhang, Xukun Li, Yingnong Dang, Qingwei Lin, Murali Chintalapati,
Saravanakumar Rajmohan, and Dongmei Zhang. Onion: Identifying
incident-indicating logs for cloud systems. In ESEC/FSE, 2021.

[54] Nengwen Zhao, Junjie Chen, Zhou Wang, Xiao Peng, Gang Wang, Yong
Wu, Fang Zhou, Zhen Feng, Xiaohui Nie, Wenchi Zhang, Kaixin Sui,
and Dan Pei. Real-time incident prediction for online service systems.
In ESEC/FSE, 2020.

[55] Günther Zäpfel, Roland Braune, and Michael Bögl. Metaheuristic search
concepts: A tutorial with applications to production and logistics. 2010.

	Introduction
	Background and Motivating Example
	A Real-world Scenario: Safe Deployment

	Batch Failure Diagnosis
	Commonalities in Scenarios
	Contrast Pattern Identification

	The Proposed System
	Data Transformation
	Meta-heuristic Search
	The Search Process
	The Scoring Function

	Consolidation
	System Implementation

	Real-world Practices
	Safe Deployment
	VM Live Migration Blackout Performance
	Diagnosis for Substrate
	VM Unexpected Reboot
	Node Fault

	Practical Experiences
	Threats to Validity
	Related Work
	Conclusion
	References

