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Abstract—Performance anomaly alerting based on trace data
plays an important role in assuring the quality of online service
systems. However, engineers find that many anomalies reported
by existing techniques are not of interest for them to take
further actions. For a large scale online service with hundreds of
different microservices, current methods either fire lots of false
alarms by applying simple thresholds to temporal metrics (i.e.,
latency), or run complex end-to-end deep learning model with
limited interpretability. Engineers often feel difficult to under-
stand why anomalies are reported, which hinders the follow-
up actions. In this paper, we propose an actionable anomaly
alerting approach TraceArk. More specifically, we design an
anomaly evaluation model by extracting service impact related
anomalous features. A small amount of engineer experience (i.e.,
feedback) is also incorporated to learn the actionable anomaly
alerting model. Comprehensive experiments on a real dataset
of Microsoft Exchange service and an anomaly injection dataset
collected from an open-source project demonstrate that TraceArk
significantly outperforms the existing state-of-the-art approaches.
The improvement in F1 is 50.47% and 20.34% on the two
datasets, respectively. Furthermore, TraceArk has been running
stably for four months in a real production environment and
showing a 2.3x improvement in Precision over the previous
approach. TraceArk also provides intrepretable alerting details
for engineers to take further actions.

I. INTRODUCTION

Deploying software applications as online service systems,
such as Microsoft Office 365, has been widely accepted by
the software industry. Unlike traditional software, many online
service systems are designed with a micro-service architecture
and deployed on a cloud platform. However, as the service
becomes more and more complex, system anomalies become
inevitable and could affect user experience significantly. In
this paper, we focus on performance anomalies, which are
reflected by decreases in service runtime performance. Taking
the email service at Microsoft as an example, there are up to
10 billion emails delivered to the cloud every day, and delivery
latency is one of the critical SLAs (Service Level Agreement).
Many factors, such as code bugs and hardware failures, can
add to latency and cause SLA violations. Therefore, SREs
(Site Reliability Engineers) employ various quality assurance
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techniques (i.e., performance anomaly detection and diagnosis)
to reduce customer impact [1]–[6].

Timely alerting performance anomalies is crucial but chal-
lenging due to the large service scale and complexity [7]–[9].
Traces have been regarded as an important source for service
understanding and performance issue diagnosis [10], [11] as
they record the detailed execution flow of a request across
service instances. Figure 1 shows an example of Microsoft
Exchange service which is responsible for routing messages
on the exchange cloud and delivering them to recipients’
mailboxes. Billions of traces are generated daily with hundreds
of components (names shown in abbreviated) involved to
provide rich information for performance issue alerting and
diagnosis. Besides shows a single trace generated from one
request that involves some of the components and is visualized
in a tree structure where the path represents the invocation
relation. The table records the component’s behavior processed
from raw trace data. Each span is automatically identified by
the trace system [12] and represents one microservice/function
in the execution path. As shown in Figure 1, the trace structure
related attributes (i.e., parentID, traceID), temporal attributes
(i.e., start time, end time) and other attributes (i.e., region,
type) are logged for further analysis.

Although existing practice support fine-grained performance
profiling based on system trace [11], an effective anomaly
detector remains a hot topic. While the existing solutions
claim high accuracy in anomaly recognition based on delicate
modeling (e.g., developing advanced deep learning approaches
to model trace structure [13]), the actionability of the reported
anomaly is arguable. In practice, not every abnormal data
pattern is investigated [14]. In industrial practice, SREs expect
a list of the most influential component-level anomalies to
take action, which we call “actionable anomaly alerting”.
Actionable means: 1) the alerted anomaly is impactful enough
to motivate engineers’ quick action 2) the alerting is inter-
pretable to deliver action guidance. For example, transient
spikes might be caused by system variation and not interest
to engineers compared with a spike that lasts longer and may
indicate a service issue. Engineers also care more about the
anomalies impacting the larger service scope. Figure 2 shows
a typical case in real practice. The latency of a component
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Fig. 1. An Example of Trace Data in an email Exchange Service
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Fig. 2. Example of non-actionable anomaly

signifies an obvious anomalous behavior of a component,
while the engineers realized that there was no significant
change considering the percentage of associated requests that
last longer than a pre-defined threshold and thus should be
marked as “non-actionable anomaly”. Such feedback helps
adjust the anomaly assessment model according to real sce-
nario. Moreover, the actionability is also related to model
interpretability. From our interview with SREs, they tend to
apply simple anomaly alerting techniques to understand how
the anomalies are alerted.

In this paper, we aim to develop an actionable anomaly
alerting solution. As mentioned above, engineers’ domain
knowledge should be incorporated when modeling anomalous
trace patterns to fit the scenario need. In a microservice system
with hundreds of different components deployed in various
scales (from several servers to worldwide), it is not practical
to manually set a proper threshold as rules for all situations.
Some approaches monitor and fire alerts on end-to-end ser-
vice latency (i.e., 95th, 99th percentile) first, then gradually
pinpoint the anomalous components [10], [11]. However, this
would postpone the alerting of a regressed component. Recent
studies tried to pursue high alerting accuracy by modeling the
component behavior using embedding of the fine-grained trace
structure and dynamics of whole service [15], [16]. However,
the complexity of these models makes them hard to be applied
to the large-scale online service system. The interpretability of
“interpretable” models proposed by previous work is question-
able for the developers to understand the alerting process, and
thus hinders the follow-up action. Existing work also tried to
classify the anomaly severity but relies on historical labels,
which are hard to obtain in practice [14].

To address the above issues, we propose TraceArk, an ac-
tionable anomaly alerting method. First, we design an anomaly
assessment method that considers both the trace structure
characteristics based on an empirical study of real trace data
and the engineers’ perspective on the anomaly. Then, inspired
by the study on active anomaly discovery [17], [18], we
incorporate a small amount of engineer experience (i.e., feed-
back) to learn the alerting decision, which enables TraceArk
to adapt to different anomalous scenarios. Meanwhile, we
infuse interpretability to TraceArk in both the model and alert
report. We adopt a tree-based model to keep the anomaly
assessment understandable and also report the impact path of
anomalous components for engineers’ action guidance, i.e., the
engineer can trace the path to further diagnose the anomaly.
The detail discussion is provided at section V-B. To evaluate
the effectiveness of TraceArk, we have conducted comprehen-
sive experiments on a real dataset of Exchange services and
an anomaly injection dataset collected from an open-source
project. The results show that TraceArk significantly outper-
forms the existing state-of-the-art approaches. Furthermore, we
have deployed TraceArk in a real production environment for
Microsoft Exchange service. TraceArk has been running stably
for four months, and the evaluation showed that TraceArk
indeed facilitates efficient performance anomaly alerting and
benefits further mitigation actions.

Overall, our main contributions of this study are as follows:

• We present TraceArk, an effective anomaly alerting
approach which incorporates engineers’ perspective on
service performance anomaly and enables actionable
anomaly alerting for microservice.

• We conduct comprehensive experiments on a real dataset
of the Exchange service and an anomaly injection dataset
based on an open-source project. The results show that
TraceArk outperforms previous state-of-the-art baselines
by 50.47% in terms of F1 under real industrial dataset,
and also reach a 92% F1 score when getting 30 feedback
samples in the synthetic dataset.

• We have deployed TraceArk on Exchange service in a real
production scenario. TraceArk achieves a Precision of
0.9068, which is 2.38X better than previous approaches.
Moreover, the interpretability of TraceArk significantly
benefit engineers’ further actions.

II. BACKGROUND AND MOTIVATION

A. Service monitoring and anomaly alerting in industry

Here we use service Exchange as an example to introduce
performance monitoring and anomaly alerting in practice.
Exchange is responsible for routing messages on the exchange
cloud and delivering them to recipients’ mailboxes under
SLA (service level agreement). Messages could be routed
through multiple servers in a complex flow and through several
hundred components. Each component adds some delays to the
message and impacts the end-to-end delivery latency.

In the Exchange team, a major task SREs undertake is
to timely catch when there is a performance issue with a
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Fig. 4. Latency of a parent component and its child component

component. The latency of each message and component taken
during the mail flow is traced and stored in Azure storage for
further analysis. A pipeline is built to process the trace data
and automatically fire alerts to corresponding SREs. Before
applying TraceArk, Exchange built some monitors that track
the latency time-series data of some key components each with
their own thresholds. The monitors contain lots of false alarms,
and SREs cannot investigate all the alerts during their rotation.
The monitors are also not smart enough to catch all the com-
ponent issues, and SREs sometimes only notice the issue until
there is a big customer impact. This motivates us to design
an actionable anomaly alerting solution that incorporates both
the trace structure characteristics and engineers’ perspectives
when modeling the component behavior. We leave more details
in the following sections.

B. Challenges

In this paper, we aim to develop an anomaly alerting
solution that is adaptive to each microservice component and
highly actionable for SREs. There are some key challenges:
1) Huge trace data volume. As mentioned, billions of traces
of email requests are generated daily, which is time and space
expensive to process. 2) The incorporation of SREs’ knowl-
edge. Designing an effective and efficient feedback strategy
to incorporate engineers’ knowledge without much effort is
not trivial. 3) Noise. In the production environment, latencies
are not stable for many components, and there are always
duplicated alerts due to structural dependency. For example, a
regression on the child component may propagate the anomaly
to its parent and even parents of the parent, which makes
the alert confused to engineers. 4) Model interpretablility. To
make the anomaly alerting actionable, the model should be
understandable to engineers without scarifying effectiveness.

C. Insights

Before proposing our solution of anomaly alerting, it is
helpful to understand real trace data and anomalies. To this
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end, we first collect extensive trace data from the Exchange
service. Each trace entry records the execution flow of a cus-
tomer request, which contains the span name, span invocation
information, and the start and end time.

Based on such information, we can calculate the Inclusive
Latency (InL) data of each component in the trace (i.e.,
individual service components), which is the subtraction of
the component entry and exit time, and the Exclusive Latency
(ExL) data, which is the running time of the component
itself. They are two mainstream trace latency definitions and
have been widely adopted by previous anomaly alerting stud-
ies [11], [13], [15]. In general, component inclusive latency
is equal to the sum of the component exclusive latency itself
and the inclusive latency of its children, e.g., Component A
InL is equal to Component A ExL + Component B InL +
Component D InL as demonstrated in Figure 3. As discussed
in the work on tprof [11], performing anomaly alerting based
on the ExL metric (i.e., operation self in tprof) would be
a better choice since it can eliminate the abnormal effects
of child components on the parent components and thus
precisely locate the truly anomalous components. For instance,
Component C in Figure 3 is abnormal, which makes its parent
B also anomalous in the InL metric. A more detailed real-life
example is shown in Figure 4, where the child service shows
an anomaly in both ExL and InL, which results in the parent
component also showing an anomaly in InL. However, the
parent is not a true anomaly since its ExL metric is healthy.
Therefore, TraceArk mainly focuses on ExL metric as it can
remove the anomaly noise.

Insight 1: Exclusive latency can eliminate the anomaly
noise and better serve anomaly alerting.

Next, we further investigate the latency distribution of the
same component in different trace paths. As discussed by pre-
vious studies [11], [13], [15], the same trace event could have
different latency distributions under different trace paths. For
instance, Component D in Figure 3 has an average inclusive
latency of 2 seconds under path A>D However, its average
inclusive latency in another path A>B>D is 1 second. And
this happens in real trace data as well. Figure 5 illustrates the
instance latency distribution of the same microservice compo-
nent under different invocation paths. Specifically, component
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A has three different invocation paths that end with component
A, and their latency distributions are significantly different,
i.e., 0.27s, 0.10s and 0.04s respectively. Meanwhile, compo-
nent B also shows a different latency distribution under four
different paths. Moreover, component B shows an anomaly
with latency larger than 4 seconds under path1, indicating
that the anomaly could happen in one specific invocation path
and not in another. Therefore, the same trace event under
different trace paths could have different latency distributions
and even different running states (i.e., normal/abnormal). This
may due to the fact that the same trace event under different
trace paths represents the trace event processing different types
of requests, e.g., a spam filtering service will have different
overheads when processing emails with and without images,
and anomalies may arise when processing emails with images.
Besides, according to previous research [11], hierarchically
aggregated traces at each layer of the hierarchy help to
diagnose anomalies. We, therefore, aggregate trace at three
horizontal granularities, i.e., Service level, Operation level and
Path level similar to previous work [11]. Besides, we do not
adopt the tree granularity in previous work, because traces in
the practical online service system have a rich tree structure,
and majority of traces have a unique tree structure.

Insight 2: The latency distributions of a specific com-
ponent could vary under different trace paths. Anomaly
assessment should incorporate fine-grained trace struc-
ture information.

Lastly, as mentioned earlier, engineers have different pref-
erences for different anomaly manifestations. They tend to
pay additional attention to anomalies that last longer or have
a larger impact. As an anomaly example in Figure 4, this
anomaly lasts for about seven hours, and engineers consider it
to be a rather serious anomaly and therefore deserves further
investigation. In contrast, for the spike anomaly that duration
less than one hour may seem less important to the engineer.
Besides, anomaly duration is only one of the indicators that
engineers use to determine whether an anomaly is worth
further processing. In practice, their judgment of an actionable
anomaly is based on many more dimensions, such as the
value of the anomaly delay, the region where the anomaly
arises, and the scope of the impact, etc. Therefore it is difficult
to model this knowledge with explicit rules. Moreover, such
knowledge does not exist in raw trace data, and therefore
hard to be obtained by unsupervised methods. To this end, we
extract multiple features of anomalies and introduce a feed-
back mechanism to model engineers’ knowledge of actionable
anomalies from a small number of feedback samples using an
interpretable machine learning model.

Insight 3: We need the knowledge of engineers to de-
termine whether anomalies are worthy of alerting, and
such knowledge is difficult to model by simple threshold
rules and unsupervised methods.
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III. PROPOSED APPROACH

Figure 6 presents the overall architecture of TraceArk,
which consists of Trace Preprocessing, Anomaly Evalua-
tion and Alerting, and Feedback. Trace Preprocessing phase
samples and aggregates massive trace data considering the
structure characteristics and other service related properties
as studied above. Anomaly Evaluation and Alerting phase is
designed for extracting and computing anomalous features of
the alerting subjects, and finally to alert actionable anomalies.
The Feedback module incorporates engineers’ feedback on
alerted anomaly and thus could dynamically adjust the model
parameters to suit different anomaly preferences.

A. Trace Preprocessing

An online service system can generate a tremendous amount
of traces, and these traces are automatically collected and
stored in a large database by the tracing system. However, it is
impractical to process all the trace data every day. Therefore,
before pre-processing, we perform unbiased sampling of the
trace data (i.e., randomly sampling 1% of the trace data and
each trace includes the complete components invocation path)
to obtain an unbiased state of the system [19] while keeping
the pre-processing overhead in a desirable level (i.e., about 1
hour to process each day’s data).

Then, while pre-processing the post-sampling trace data,
TraceArk mainly focuses on the ExL metric, which can elim-
inate the abnormal impact of child components on the parent
components and thus precisely locate the truly anomalous
components, as discussed in Insight 1. Next, we capture the
temporal behavior of the component by aggregating the time
series in terms of component invocation paths. For example,
six components in Figure 3 can generate six path records
(i.e., A, A>B, A>D, A>B>C, A>B>D, A>D>E). Meanwhile,
according to previous research [11] and Insight 2, different
granularities of anomaly alerting results benefit the actionabil-
ity. We, therefore, record those fine-grain metadata for each
component, such as the Operation type (the type of request,
e.g., POST and GET of the HTTP request), Service name (i.e.,
name of the span that the component belongs to), to facilitate
the retrieval of different granular data from the database.
Besides, we also collect more performance-related time series
indicators such as the InL metric (because it is useful to
indicate anomaly propagation between parents and children
components), 95th percentile ExL metric and 99th percentile
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Fig. 7. Example of aggregated time-series data

ExL metric to provide engineers with more information for
anomaly diagnosis.

B. Anomaly Evaluation and Alerting

Once the trace is pre-processed, all the data required for
anomaly alerting will be stored in the dataset. We can easily
extract anomaly features at different levels (i.e., Service, Op-
eration, Path) and on different time-series metrics (e.g., ExL
indicator, InL indicator) using the Anomaly Feature Extractor
component in Figure 6. For instance, we take Path as the
granularity for alerting anomalies based on the ExL indicator.
First, we set the alerting window according to the practical
requirement (e.g., Day T 00:00:00 to Day T 23:59:59) and
retrieve the time-series data within the alerting window in Path
granularity from the database (name it alerting data). Then
the data before the alerting window (e.g., one week from Day
T-7 00:00:00 to Day T 00:00:00) is selected (name it base
data) because we believe that these data reflect the latency
distribution pattern of components in the general situation (i.e.,
without anomaly). Finally, the data are re-aggregated (e.g.,
into hourly average time-series data) to further remove minor
noise. Specifically, Figure 7 presents one aggregated anomaly
example in which each data point indicates the average ExL
in one hour and we denote it as value. Meanwhile, we also
record the total count of this alerting subject appearing in all
traces data within each hour as subject count, and record the
total count of traces within each hour as trace count.

ContinueNumi =

{
ContinueNumi−1 + 1 if diffi > 0

0 if diffi ≤ 0 or Initialization
(1)

V alueScore =
∑diffi>0

i
diffi
k×σ (2)

ContinueScore =
∑diffi>0

i ContinueNum2
i (3)

TrendScore =
∑diffi>0

i ContinueNum2
i × diffi

k×σ (4)

NormalizedCount =

∑
subject counti∑
trace counti

(5)

Overhead =
NormalizedCount×
(avg(AlertingV alue) − avg(BaseV alue))

(6)

After obtaining the required time-series data, we can cal-
culate the anomaly score for each alerting subject, which
considers both the numerical changes of the anomaly and the
continuity of the anomaly (since a persistent anomaly have
higher priority than a temporary one). As shown in Figure 7,
ValueScore [20] in Equation 2 is the numerical changes of the
anomaly where diff denotes the deviation of the value from the
K-sigma threshold. ContinueScore in Equation 3 represents the
continuity of the anomaly which is the sum of ContinueNum,
and ContinueNum indicates the number of continuous points
that exceeded the health threshold. TrendScore in Equation 4

takes into account both the numerical changes of the anomaly
and the anomaly continuity which is a more comprehensive
indicator.

The TrendScore actually indicates the anomalous degree
in temporal and can be used to perform anomaly alerting
by an anomaly threshold. However, estimating this anomaly
threshold is tricky, and engineers are usually concerned about
the service impact when prioritizing anomaly alerts [14],
[17]. To this end, we consider providing more helpful anomaly
features for the threshold estimation method in addition to the
above three temporal features. Therefore, based on previous
empirical studies [11], [15] and engineers’ experience, we
decide to extract features such as the NormalizeCount of the
alerting subject (i.e., the number of appearances in the alerting
window and normalized by the number of all traces as present
in Equation 5), its MaxLatency (i.e., maximum latency value
max(value)) and Overhead (i.e., the increase in the total
latency of the alerting window relative to the base window data
as present in Equation 6) as the basis for assessing whether
the alerting subject is an actionable anomaly before asking for
further feedback from engineers. Our subsequent experiments
demonstrated the effectiveness of these features.

C. Feedback

As mentioned in the Introduction, previous studies [13],
[15], [18] try to model the component behavior based on
latency data and structure information, but they overlook the
actionability of alerted anomaly. In practice, the output of most
previous anomaly alerting algorithms was anomaly ranking or
a fixed number of anomaly items [11], which implies that their
anomaly thresholds need to be manually adjusted. Determining
anomaly threshold is a critical issue [17], as different projects
or even different engineers could have different preferences,
e.g., some anomalies are essential and actionable under a
specific project, while similar anomalies may seem trivial to
the engineers of another project. An over-extended anomaly
threshold would result in under-reporting, i.e., low recall, while
an under-extended threshold will result in a false alarm, i.e.,
low precision. Therefore, the determination of the anomaly
threshold is a key factor affecting the performance of an
anomaly alerting algorithm. Previous studies [17], [18] have
devoted substantial effort to this issue and found that engineers
are willing to mark a small number of samples to yield better
alerting results. Inspired by these studies, we also designed
the feedback mechanism in TraceArk to incorporate a small
amount of engineers’ feedback to learn actionable anomaly
thresholds.

To this end, we chose the highly interpretable tree-based ma-
chine learning model XGBoost [21] and the semi-supervised
learning paradigm [22]. When new anomaly results (initially
there are some anomalies identified by simple pre-defined
threshold rules) are produced after the Anomaly Evaluation
and Alerting phase, we add them to a Feedback dataset, as
demonstrated in Figure 8. Engineers can then fetch several
unlabeled samples (i.e., alerting subjects) from it (the fetched
samples will be given by a non-playback selection strategy as
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samples
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Fig. 8. Example of feedback dataset

further described in Section IV-C1). After the engineer finishes
labeling the anomalies the labeled samples and all the samples
in the Feedback database are fed into the XGBoost model
for semi-supervised learning to learn and update the anomaly
thresholds derived from the parameters of the model. Finally,
the samples identified as anomalies will be reported to the
engineers. Moreover, as the new samples coming, the outdated
ones (e.g., samples of the previous month) will be removed
from Feedback dataset to enable the model adaptive to the
update of online service systems.

IV. EVALUATION

This section presents the effectiveness of TraceArk. We
conduct comprehensive experiments on two representative
datasets and several related state-of-the-art (SOTA) baselines
to answer the following research questions:

• RQ1: How effective is TraceArk compared with baseline
approaches? For this research question, we extensively
study the effectiveness of online service performance
anomaly alerting between TraceArk and selected base-
lines on two representative datasets.

• RQ2: How the feedback module improves TraceArk ef-
fectiveness? In this research question, we delve into the
performance of different feedback settings to demonstrate
the effectiveness of the feedback module.

A. Experimental Setup

1) Benchmark System and Dataset: To evaluate the effec-
tiveness and efficiency of TraceArk, we collected two represen-
tative trace datasets of online service systems. One dataset is
collected from a real Microsoft online service system. Also,
for a comprehensive comparison with previous studies [11],
[13], [15], we collected a dataset with labels obtained by
performing fault injection on TrainTicket [23], an open-source
microservice system designed for research.

• Exchange: A real industrial trace dataset collected from
Microsoft M365 Exchange service. When the user sends
an email, the email passes through different microservice
components and leaves a log record in the logging
system. The real-world system may have hundreds of
millions of data per day, and the experiment dataset is
processed as discussed in Section III-A. Table I illustrates
the statistics of the Exchange dataset, which contains
several millions traces collected across dozens of days.
Meanwhile, we build this dataset based on the practical

scenario of the Exchange service. In this scenario, we set
the anomaly alerting window to one-day for engineers’
daily troubleshooting work, and set the data aggregation
unit (i.e., time-series unit) to one hour, and selected
the data of the past six days as base data. In the end,
we collected a dataset with 8074 alerting subjects in
Path granularity, and worked with experienced Exchange
engineers to identify and label 439 actionable exceptions
in this dataset. Note that Exchange dataset does not have
Operation as the trace log do not contain this metadata,
thus we ignore this granularity in the subsequent experi-
ments.

• TrainTicket: TrainTicket is a train ticket booking system
based on microservice architecture, which contains 41 mi-
croservices and has been widely investigated in previous
microservice anomaly detection studies [11], [24]. There-
fore, to compare TraceArk with previous baselines, we
further performed fault injection on TrainTicket following
previous research [25] and gathered a labeled dataset.
In particular, we first deployed the latest version of the
TrainTicket service on the kubernetes [26] cluster of our
local machine. Then, chaos-mesh [27] (a powerful chaos
engineering platform for kubernetes) injects anomalies
into TrainTicket, e.g., network faults, pod faults, and
stress scenarios. Similar to previous research [25], we
injected six different kinds of anomalies into TrainTicket
(including CPU/memory stress on pods, pod failure,
and packet corrupt/loss/delay on pods) at random lo-
cations and time frames. Consistent with the previous
study [15], [25], we added periodicity to the workload
to simulate periodicity in real-world service systems.
Finally, Jaeger [12] (an open-source, end-to-end tracing
system) is employed to record the trace data generated
by TrainTicket. Table I presents the statistics of the
TrainTicket dataset, which contains ten days of 1,085,719
trace data. Meanwhile, due to the slight fluctuation of
trace latency in TrainTicket dataset, we set the alerting
window to half an hour, set the data aggregation unit
to 1 minute, and selected the data of the past half hour
as base data. Consequently, we collected a dataset with
19,285 alerting subjects in three granularities. Meanwhile,
by giving the time and locations of faults injection, we
can get the exact anomaly labels by the injection time
and duration and finally identify and label 354 anomalies
in three granularities.

2) Baselines: We compare TraceArk with the following
state-of-the-art trace-based and monitoring-based anomaly
alerting approaches [28]. In particular, trace-based approaches
detect the anomalies by analyzing the differences between
normal traces and the traces to be tested with respect to trace
latency or trace structure, while monitoring-based approaches
directly monitor the KPI time-series data of each alerting
subject.
Trace-based anomaly alerting techniques:

• Tprof [11] is a performance profiling approach which
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TABLE I
DATASET STATISTICS

Dataset #Traces Time #Microservice
spans

Anomaly
Source

Aggregation
Unit

Alerting
Window

Base
Window

#Alerting Subjects #Anomalies
Service Operation Path Service Operation Path

Exchange several million dozens of days several hundred Real-world anomaly 1 hour 1 day 6 day 3212 / 8074 171 / 268
TrainTicket 1085719 10 day 41 Injected by us 1 minute 30 minute 30 minute 2185 5890 11210 64 105 185

utilizes distributed tracing systems to collect trace data
and then gradually identify performance issues in a
hierarchical manner.

• TraceAnomaly [15] is a trace anomaly alerting approach
with call-path-based trace representation and a posterior
flow deep bayesian network.

• MultiModalTrace [13] is a trace anomaly alerting ap-
proach, which utilizes bimodal distributed trace informa-
tion with trace latency and trace structure.

Monitoring-based anomaly alerting techniques:

• AutoEncoder [29] is a time-series anomaly alerting ap-
proach, which utilizes neural networks to calculate the
reconstruction errors of data and detect anomaly.

• DeepSVDD [30] trains a neural network by minimiz-
ing the volume of a hypersphere that encloses the net-
work representations of the data, and then calculates the
anomaly score based on the distance from the center of
data points.

• ECOD [31] is a unsupervised outlier alerting algorithm
based on empirical cumulative distribution functions [31].

• IForest [32] monitor outliers in time-series data by build-
ing an isolation forest.

• KNN [33] is a time-series anomaly alerting approach
using the distance to the k-th nearest neighbor of each
data point as the outlier score.

• LUNAR [34] predicts the anomaly score of each data
point by feeding its ordered list of distances to its k
nearest neighbours to a neural network.

• SUOD [35] is an ensemble model that incorporates
multiple anomaly alerting models.

Note that log-based anomaly alerting methods are also
promising [24], [28], [36], [37], however, in this work we
focus on performance anomaly alerting based on trace data.

3) Metrics: Following previous research [13], [15], we em-
ployed Precision, Recall, and F1 to evaluate the effectiveness
of anomaly alerting approaches based on TP (True Positive),
FP (False Positive), and FN (False Negative).

• Precision: the fraction of anomaly instances among all
predicted anomaly instances, i.e., Precision = TP

TP+FP .
• Recall: the fraction of anomaly instances that were pre-

dicted as anomaly, i.e., Recall = TP
TP+FN .

• F1: the harmonic mean of the Precision and Recall, i.e.,
F1 = 2×Precision×Recall

Precision+Recall .
• AUC: a ranking-based metric which tests whether posi-

tives are ranked higher than negatives.

Notice that calculating of Precision and Recall metrics requires
to defining thresholds, and different thresholds can signifi-

cantly affect the evaluation results. Therefore, referring to the
previous study [18], we adopt the optimal threshold for each
baseline to calculate the best existing F1 (denoted as F1best),
as well as the corresponding precision and recall. Besides, we
further introduce a ranking-based and threshold-free metric,
AUC, which evaluates whether positives are ranked higher than
negatives.

4) Implementation: The implementation of TraceArk is
based on Python and the XGBoost package. We set k to 3 at
Equation 4 by following the widely adopted 3-sigma princi-
ples [38], and set the recommendation count at Section IV-C1
to 10. We set the sub-tree number of XGBoost to 3, while all
other parameters of the XGBoost model are in default settings.
We directly adopted the original code released by Tprof
and TraceAnomaly in our experiments. For MultiModalTrace,
which is not open sourced, we implemented it based on their
papers. We implemented the rest of the monitoring-based
anomaly alerting baselines using pyod [39] (a comprehensive
and scalable python library for outlier/anomaly alerting).

All the experiments are conducted on a Ubuntu 18.04 server
with Intel Xeon Gold 6140 CPU, 768 GB RAM, 2 Nvidia
Titan-V 12GB GPU.

B. Effectiveness Evaluation

In our experiment, there are 11286 alerting subjects in
the Exchange dataset and 19285 alerting subjects in the
TrainTicket dataset. We first demonstrate the detailed ef-
fectiveness evaluation results of TraceArk without feedback
mechanism and leave the evaluation of feedback module in
next section. The result together with baselines on these two
datasets are presented in Table II and Table III, respectively.

Table II presents the effectiveness evaluation results of
TraceArk and other baselines on the TrainTicket dataset under
different granularities. The results demonstrate that TraceArk
significantly outperforms other baselines even without feed-
back tuning (i.e., detecting anomaly based on TrendScore)
and achieves the best AUC and F1 at all alerting granulari-
ties. Specifically, TraceArk achieves the best F1 at the fine-
grained Path granularity, with a 34.90% improvement over the
best trace-based anomaly alerting approach (i.e., 0.9373 of
TraceArk v.s. 0.6948 of MultiModalTrace). MultiModalTrace
achieves similar Recall as TraceArk, while its Precision stands
low at 0.5527, compared to TraceArk’s 0.9338, indicating
that MultiModalTrace has more false positives. The reason
is that the trace-based methods usually design one general
end-to-end anomaly assessment model and then apply it to
different components, which, however, may not perform well
since the behavior of different components actually varies. In
contrast, TraceArk has a training phase for each microservice
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TABLE II
EFFECTIVENESS EVALUATION OF THE TRAINTICKET DATASET UNDER DIFFERENT GRANULARITY

TrainTicket
Service Operation Path

AUC Precision Recall F1best AUC Precision Recall F1best AUC Precision Recall F1best
Tprof / .1591 .8116 .2660 / .1674 .6857 .2692 / / / /
TraceAnomaly .9250 1.000 .7246 .8403 .9077 1.000 .4286 .6000 .7555 .1958 .1514 .1707
MultiModalTrace .9987 .8961 1.000 .9452 .9937 .5642 .9619 .7113 .9942 .5527 .9351 .6948
AutoEncoder .9966 .8205 .9275 .8707 .9964 .7227 .8190 .7679 .9969 .6695 .8889 .7637
DeepSVDD .9968 .8400 .9130 .8750 .9964 .6765 .8762 .7635 .9970 .7347 .8000 .7660
ECOD .8799 .5763 .4928 .5313 .8831 .3478 .3810 .3636 .8233 .2906 .3278 .3081
IForest .8507 .1517 .4638 .2286 .8766 .1312 .5048 .2083 .8393 .1176 .3222 .1724
KNN .9966 .8955 .8696 .8824 .9924 .5641 .8381 .6743 .9933 .5470 .8722 .6724
LUNAR .9971 .8824 .8696 .8759 .9968 .7778 .8000 .7887 .9973 .7110 .8611 .7789
SUOD .7816 .1348 .3478 .1943 .7829 .0800 .3429 .1297 .7437 .0655 .1500 .0912
TraceArk .9994 .9298 1.000 .9636 .9997 .9861 .9342 .9595 .9995 .9338 .9407 .9373

TABLE III
EFFECTIVENESS EVALUATION OF THE EXCHANGE DATASET UNDER

DIFFERENT GRANULARITY

Exchange
Service Path

AUC Precision Recall F1best AUC Precision Recall F1best
Tprof / .3750 .1666 .2307 / .1750 .0443 .0707
TraceAnomaly .5105 .5000 .0222 .0426 .5037 .0667 .0127 .0213
MultiModalTrace .8832 .2672 .5906 .3679 .4031 .1441 .4755 .2211
AutoEncoder .8807 .4699 .4561 .4629 .9069 .3505 .4510 .3945
DeepSVDD .8849 .3786 .4561 .4138 .8850 .2135 .5070 .3005
ECOD .7968 .2405 .4094 .3030 .8556 .1707 .4476 .2471
IForest .7958 .1614 .6257 .2566 .8317 .1183 .5350 .1938
KNN .9157 .3305 .6842 .4457 .8964 .1766 .6923 .2814
LUNAR .8523 .3788 .4386 .4065 .8174 .1460 .5105 .2271
SUOD .7975 .1946 .5029 .2806 .8558 .1550 .4580 .2317
TraceArk .9713 .6707 .6433 .6567 .9680 .5733 .6154 .5936

component, which means that the assessment is customized.
Moreover,TraceArk is lightweight and efficient to apply when
compared with the neural network model of MultiModalTrace.

Also, TraceArk has a 20.34% improvement over the best
monitoring-based approach LUNAR (i.e., 0.9373 of TraceArk
v.s. 0.7789 of LUNAR). Similar to MultiModalTrace, LUNAR
achieves high Recall while having more false alarm samples,
i.e., low Precision. This result shows that those methods
detecting anomalies of single time-series data point would
ignore other features of anomalies in practice(i.e. continuity),
and thus is more sensitive to temporary anomalies (i.e., spikes
in the time-series data) and produces more false alarms.

Table III provides the effectiveness evaluation results of
TraceArk and other SOTA baselines on the Exchange dataset.
The results demonstrate that TraceArk outperforms other
baselines and achieves the best F1 results on Exchange.
Specifically, TraceArk achieves a 168.48% improvement over
the best trace-based anomaly alerting approach (i.e., 0.5936
of TraceArk v.s. 0.2211 of MultiModalTrace) and provides a
50.47% improvement over the best monitoring-based approach
(i.e., 0.5936 of TraceArk v.s. 0.3945 of AutoEncoder). Com-
pared with the TrainTicket dataset, TraceArk shows a more
significant advantage over the other approaches on the more
complex Exchange dataset, indicating that TraceArk is more
robust on complex data.

C. Feedback Evaluation

We then evaluate feedback mechanism on the two datasets
using different feedback strategies. The experiment not only

Duration Short Duration Long

Latency Low

Latency High

A11

A21

A12

A22

Type Anomaly 
Count

A11 354

A12 311

A21 178

A22 153

Fig. 9. TrainTicket anomaly division

evaluates the effectiveness of feedback in improving the alert-
ing accuracy, but also shows the ability of adapting to different
anomaly scenarios and engineers’ preferences.

We first run TraceArk to obtain the anomaly scores and other
anomaly-related features, e.g., NormalizedCount, MaxLatency,
Overhead, etc., of all alerting subjects in the dataset discussed
in Section III-B. We denote the above results as the inter-
mediate data and then split the samples of the intermediate
data randomly and equally into a training dataset and a testing
dataset, e.g., randomly split the 11210 samples in TrainTicket
(Path) dataset into two datasets of 5605 samples. In each round
of experiments, we take a limited number of samples (e.g.,
ten samples each round) from the training dataset as feedback
to tune the XGBoost model and then verify the performance
of the tuned anomaly alerting model on the testing dataset.
We repeat the above steps until the end of the experiment.
Moreover, we perform the feedback experiment (including
dataset division) 100 times and report the average value and
error range of multiple experiments.

Meanwhile, to demonstrate the adaptability of our feedback
module under different projects and engineers’ preferences
for actionable anomalies, we divide the anomalies into four
types based on their severity. To avoid data bias that might be
introduced by manual division, we divide the anomalies into
four categories based on the median latency and duration of
the original 354 anomalies. Specifically, as shows in Figure 9,
we first divide the anomalies into Latency Low and Latency
High categories based on the median latency and divide the
anomalies into Duration Short and Duration Long based on
the median duration. Finally, four types of anomaly labels
are introduced according to the division in Figure 9, where
anomaly A11 contains all 354 anomalies, and anomaly A22
includes only the 153 anomalies in both Latency High and
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Duration Long categories. The four anomaly types introduce
more complexity to actionable anomaly alerting solution and
provide good settings for evaluating the adaptability of the
feedback module to different actionable anomaly preferences.

1) Feedback Strategy: Feedback strategy is designed to
choose what samples should be recommended to engineers for
labeling among all the detected subjects. Following previous
studies [18], we selected three popular feedback strategies in
this field (i.e., Top, Spread and Around strategy). We proposed
a new strategy Kmeanpp that selects the n centers determined
by the kmean++ algorithm as the recommended samples,
i.e., the n samples with significant variances. In addition,
we also add a previous feedback approach as a baseline for
our feedback module, which uses isolation forest and active
learning to adapt the model to the engineer’s feedback, so we
call it IF-Active.

Subsequently, we evaluated the effectiveness of the four
strategies on the Exchange and TrainTicket datasets. As shown
in Figure 10 and Figure 11, the Kmeanpp strategy performs
better in the initial stage. In particular, Kmeanpp can achieve
the best F1 score with only 10 to 30 feedback samples in all
datasets. Meanwhile, Kmeanpp also can achieve comparable
performance to Top in the late stage. For example, Top can
achieve the best performance after getting 100 feedbacks
in TrainTicket A11 and also can achieve a slightly better
performance than Kmeanpp in the Exchange dataset after 40
feedback samples. However, in the late stage, the Kmeanpp
strategy achieve the best F1 score at the other three dataset
(i.e., TrainTicket A12, A21, A22). For example, Kmeanpp
slightly outperforms Top at TrainTicket A12 dataset after 130
feedback samples and outperforms Top at TrainTicket A22
dataset after 150 feedback samples. Moreover, the Kmeanpp
strategy substantially outperforms previous baseline IF-Active
at Exchange and TrainTicket A11 A21 A22 datasets. This
implies that Kmeanpp strategy can recommend more diverse
samples than other methods, and thus achieve the best per-
formance in the initial stage. While in late stage, the Top
strategy covers a sufficiently diverse sample set and eventually
performs as well as Kmeanpp strategy.

As shown in Figure 10, TraceArk can achieve an F1 score
of 0.74 with the the feedback mechanism, comparing to at
most 0.5936 F1 score without feedback shown in Table III.
We can conclude that the feedback module delivers significant
performance improvement on the Exchange dataset.

2) Recommendation Count: To investigate the effect of
different recommendation sample numbers per round (i.e.,
n in the feedback strategy) on TraceArk performance, we
evaluate the effectiveness of different n under two datasets with
Kmeanpp. As the evaluation results in Figure 12 demonstrate,
TraceArk performs poorly in the initial stage when n is small.
However, when the number of labeled samples increases, the
F1 score tends to be consistent for different recommendation
numbers. As shown in Figure 12a, the F1 score converges for
different n when the number of labeled samples exceeds 100.
Based on this finding, we should recommend more unlabeled
samples (such as n=20 or n=30) to engineers at the early stage
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Fig. 10. Exchange feedback evaluation result. Where the x-axis represents
the number of accumulated feedback samples and the y-axis represents the
corresponding F1 of TraceArk after fine-tuning.
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Fig. 11. TrainTicket feedback result

of TraceArk deployment and reduce the number of recom-
mendations per round after the number of feedback samples
becomes larger to reduce the labeling effort of engineers.

V. PRODUCTION IMPACT AND DISCUSSION

A. How effective is TraceArk in real scenario?

TraceArk has been transferred to the Exchange team and is
applied to the daily anomaly alerting of the Exchange service,
which contains several hundred microservices spread over
O(100) datacenters worldwide and can generate O(1B) new
trace data every day. Currently, TraceArk has been running
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Fig. 12. Recommendation count experiment
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Fig. 13. TraceArk interface of Exchange service. TraceArk Interface is the home page of TraceArk. Impacted Path Visualization demonstrates the end to end
latency of Exchange, the inclusive latency of parent component and the latency of alert component from top to bottom. Decision Tree Structure demonstrates
the structure of the decision tree in TraceArk.

steadily online for four months (from June to October). In the
last few dozens of days, TraceArk reported 118 actionable
anomalies to engineers, and 107 of them were confirmed
by engineers, achieving a Precision of 0.9068. The previous
approach adopted by the Exchange team is based on statistical
indicators which only has a 0.38 Precision in practice. There-
fore, TraceArk provides a 2.38X improvement in Precision
and dramatically reduces the false alarm rate and eases the
workload of engineers. Moreover, engineers express that the
model details and the impact path of the alerted component
TraceArk help reduce their fault diagnosis time. The runtime
overhead is about 2690.59 seconds in average, which satisfies
the requirement (i.e., 1 hour) for the engineer to complete
anomaly alerting for the online service.

B. How interpretable are the TraceArk and its results?

To justify the interpretability of TraceArk, we further vi-
sualize the deployed TraceArk interface of the Exchange
system in Figure 13. In particular, “TraceArk Interface” is
the home page for engineers to review the alert results. On
this page, engineers can query the alert results for each day,
and each result contains information including Rank, Com-
ponent Info, Anomaly Info, Trend, and Feedback Info. The
“Rank” is the severity ranking of the component in the daily
alert results (based on the XGBoost prediction). “Component
Info” includes basic information about the component, such
as component name, parent component name, and the data
center it belongs to. “Anomaly Info” contains the features
of anomaly evaluation, i.e., three anomaly scores and other
features. In addition, in the “Alert Detail” item, engineers can
further explore the decision logic of TraceArk. Note that to
construct an understandable anomaly alerting algorithm, we
set the number of sub-decision trees of the XGBoost model
to 3 in practice. Whereas previous studies tended to integrate
hundreds of decision trees in their algorithms, it is difficult
to interpret such algorithms. The “Decision Tree Structure”
figure shows one of the decision tree structures of TraceArk,
and such a decision tree has a depth of 5 and 6 inter-nodes
which is acceptable to engineers. The “Trend” column shows

the exclusive latency time series of the alert component. In
addition, in the upper right menu, engineers can further view
other time-series indicators (e.g., 95th exclusive latency) and
the impacted path of the component (i.e., “Impacted Path
Visualization” on the right) to facilitate further diagnosis of
the anomaly. Finally, in the Feedback Info column, we provide
an on-the-fly feedback mechanism that allows engineers to
provide quick feedback on anomalies when checking the alert
results of the day to reduce the labeling effort of engineers.

VI. RELATED WORK

Anomaly alerting in online service systems is a promising
research domain, many researchers have investigated the topic
from different perspectives and proposed their solutions.

Log-based anomaly alerting techniques [24], [40]–[42] per-
form data mining on the log data generated by the service
system to identify the data patterns of normal logs, while logs
that do not match the normal patterns are flagged as anoma-
lies. For example, LogAD [40] integrates multiple anomaly
detection approaches and domain knowledge to tackle diverse
abnormal log patterns. Li et al. [41] employ several natural
language processing techniques to improve the effectiveness
of log-based anomaly alerting approach.

Distributed tracing-based anomaly alerting techniques [13],
[15], [43], [44] model the pattern of normal traces by ana-
lyzing trace structure and component delays and applying this
model for detecting anomalies in the system. For example,
TraceAnomaly [15] trains a deep bayesian neural network on
normal trace data and then uses such network to compute
the log-likelihood of a newly generated trace being present
in normal data, and finally treats the samples with low log-
likelihood as anomalies. MultiModalTrace [13] trains a multi-
modal LSTM neural network on normal data. Alertrank [43]
adopts XGBoost ranking algorithm to identify the severe alerts
out of all incoming alerts based on a set of powerful features
(e.g., textual and temporal alert features).

Monitoring-based anomaly alerting techniques address
anomaly alerting in a much simpler way. Instead of processing
logs or trace data generated by the system, they install a
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monitor for each server to check the status of the service
directly and set specific SLOs for each monitor, such that
an anomaly arises when the SLOs are exceeded [7]–[9].
MicroRCA [45] represents the KPIs of the monitor at each
time point as a vector, and then perform anomaly alerting.
Besides, several studies have proposed that it is possible to
introduce a few human feedbacks to improve alerting accuracy.
For example, IF-Active [17] and iRRCF-Active [18] improve
the performance of baseline models by using human feedback
samples and active learning.

In a nutshell, log-based and trace-based anomaly alerting
techniques usually package the anomaly alerting of different
service components into one large system anomaly alerting
task, i.e., they need to use one model to learn the data patterns
of different service components simultaneously. As data pat-
terns are highly diverse from service to service, meaning that
this is a challenging task, resulting in poor performance for
this type of approach. Meanwhile, the deployment overhead of
monitor-based techniques can be high, as new monitors need to
be deployed within the system to check the status of the service
directly. Moreover, the above methods rarely have feedback
mechanisms to accommodate different project preferences for
anomaly thresholds. Lastly, their interpretability is insufficient,
e.g., the interpretability of the textual features adopted by
log-based techniques and Alertrank has been much criticized,
which prevents engineers from working with them with con-
fidence. Yet the TraceArk proposed in this paper solves the
above problems.

VII. CONCLUSION

In this paper, we propose an actionable performance
anomaly alerting approach TraceArk based on trace data for
online service systems. It contains an anomaly assessment
method that takes into account both temporal latency in-
formation, trace structural characteristics and the engineers’
perspective on the anomaly. Meanwhile, TraceArk also in-
corporates a small amount of engineer experience (i.e., feed-
back) using a simple structured tree-based model to learn
actionable anomaly thresholds, and could adapt in different
anomalous scenarios. Our comprehensive experiments show
that TraceArk significantly outperforms the existing state-of-
the-art approaches. Furthermore, TraceArk has been deployed
and running stably for four months in a real production
environment with high anomaly alerting accuracy. The inter-
pretable alerting details help engineers understand the alerting
process and guide further diagnosis.
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