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Abstract—Key performance indicator (KPI) anomaly detection
(AD) is critical to ensure service quality and reliability. Due
to the effects of work days, off days, festivals, and business
activities on user behavior, KPIs may exhibit different pat-
terns within different days, which we call periodicity profiles
of KPIs. However, existing KPI AD approaches have difficul-
ties in adapting to diverse periodicity profiles due to the lack of
generality. In this paper, we propose an automatic and generic
framework called Period, which can accurately detect the period-
icity profiles through daily subsequences clustering, and improve
the performance of AD methods by robustly and automatically
adapting to different periodicity profiles. In our evaluation using
several real-world KPIs with different periodicity profiles from
large Internet-based services, the clustering algorithm used to
detect periodicity can achieve about 0.95 accuracy on average.
More importantly, further evaluation on 56 KPIs shows that
Period can significantly improve the best F-score of several widely
used AD approaches by up to 0.66.

Index Terms—Key performance indicator, anomaly detection,
periodicity detection, subsequences clustering.

I. INTRODUCTION

NOWADAYS, there is a growing need to accurately detect
anomalies and trigger timely troubleshooting or mit-

igation in Internet-based services, such as search engines,
online shopping and social networks [1], [2]. It is critical to
closely monitor a great number of KPIs (Key Performance
Indicators), such as the number of page views (PV), the
number of online users, and CPU utilization, to ensure ser-
vice quality and reliability [3], [4]. In general, many KPIs are
strongly correlated with user behavior, which can be influ-
enced by work days, off days, festivals, promotion and some
business activities. For example, based on our observation on
an online shopping service, the PV is higher in the day time
than that at night in a common diurnal cycle, and it is higher
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Fig. 1. KPI with imperfect periodicity due to the off days (New Year’s Day
and weekends) and Spring Festival1.

(a) (b)

Fig. 2. With imperfect periodicity, both TSD-day and TSD-week will report
some false positives (FP, marked in orange) and false negatives (FN, marked
in red). (a) TSD-day. (b) TSD-week.

on work days than off days. If there is a promotion on every
Friday, the PV will also increase significantly on those days.
Therefore, KPIs may exhibit different patterns within differ-
ent days, which we call periodicity profiles, such as daily,
weekly and other imperfect or complex periodicity. Fig. 1
shows an intuitive example of imperfect periodicity, where the
work days, off days (including New Year’s Day and weekends)
and Spring Festival exhibit different patterns. Anomalies are
labeled in red.1

Although a large number of anomaly detection approaches
have been proposed in the literature [1]–[11], including tra-
ditional anomaly detectors (e.g., Moving Average (MA) [6],
Exponential Weighted MA (EWMA) [5], Holt-Winters [1] and
Time Series Decomposition (TSD) [11]), supervised ensemble
algorithms (e.g., Opprentice [3] and EGADS [7]) and unsu-
pervised algorithms (e.g., Donut [4]), existing methods have
no ability to adapt to diverse periodicity profiles due to the
lack of generality.

In detail, anomaly detectors like Holt-Winters and TSD need
the season length of KPI as their input parameters, which
is usually manually configured as either day or week by
default. Take the KPI in Fig. 1 as an example, it is unrea-
sonable to simply use a fixed season length as the parameter
of TSD or Holt-Winters. As Fig. 2 shows, both TSD-day

1According to the 2017 public holiday calendar in China, Monday January
2nd is an off day, and Sunday January 22th is a work day.
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Fig. 3. Periodicity profiles of the six KPIs used in our experiments. (a) KPI A. (b) KPI B. (c) KPI C. (d) KPI D. (e) KPI E . (f) KPI F .

and TSD-week will generate some false positives (marked in
orange) or false negatives (marked in red), since the fixed
season length cannot characterize the imperfect periodicity.
As for some other anomaly detectors like MA and EWMA,
the imperfect periodicity profiles can destroy the stationarity
or perfect seasonality of KPI, which will result in unsatis-
factory performance. Besides, the state-of-the-art unsupervised
anomaly detection algorithm Donut based on Variational Auto-
Encoder (VAE) [4] performs well only on smooth seasonal
KPIs. It is also hard for Donut to capture the periodicity
profile from training data, since there is no time or date
information in Donut input variables (a window of data
points). Consequently, the above methods have difficulties in
handling various periodicity profiles in real applications.

In this work, we aim to design an automatic and generic
framework to robustly adapt KPI anomaly detection to diverse
periodicity profiles. There are four key challenges as follows.

• Diverse periodicity profiles. KPIs often have very differ-
ent periodicity profiles and Fig. 1 only presents a common
and specific phenomenon that off days and festivals are
special. Fig. 3 shows six KPIs that are used later in our
evaluation (Section IV). We can observe that in addition
to the off days and festivals, other days may also behave
differently, e.g., Friday in KPI D. It is infeasible to pre-
define the special days based on the calendar since we
are not sure which day is special. Therefore, a generic
framework to deal with diverse periodicity profiles is
needed.

• Large number of KPIs. Since the number of KPIs in
practice is collected about millions to tens of millions
in large Internet-based services [12], it is labor intensive
for operators to check the periodicity profile and con-
figure parameters for each KPI manually. Therefore, an
automatic periodicity adaptation framework for anomaly
detection should be provided.

• Periodicity drift. Periodic patterns might not be perfect
and can have some “drifts”, i.e., the actual execution time
of a daily job might vary by tens of minutes, which must
be explicitly dealt with.

• Various anomaly detection approaches. Given that dif-
ferent anomaly detection methods perform differently

for different KPIs [3], our design needs to be generic
and robust to accommodate to various anomaly detection
approaches.

To address the above challenges, in this paper, we propose
an automatic and generic periodicity adaptation framework for
KPI anomaly detection named Period. The core idea of Period
is to transform the anomaly detection on a given KPI with
unknown periodicity profile into anomaly detection on k sub-
KPIs with “clear daily periodicity”, and the k sub-KPIs can
be acquired by our proposed daily subsequences clustering
technique.

Period has two key components. (1) Offline periodicity
detection. For each KPI, Period first cuts the historical KPI
data into daily subsequences. Then Period transforms periodic-
ity detection into an unsupervised clustering problem of these
daily subsequences. Each of the resulting k clusters indicates
a different daily pattern (e.g., k = 3 in Fig. 1). By querying
the APIs for official public holiday calendar (e.g., [13], [14])
and using the dates of daily subsequences, each cluster can be
assigned a specific name (e.g., day of week, day of month, off
day, festival). Then all the daily subsequences in a cluster are
concatenated in chronological order into a new sub-KPI, each
of which has clear daily periodicity, and Period applies an
anomaly detection model for each sub-KPI (e.g., each cluster
uses a separate TSD model). (2) Online anomaly detection
adaptation. For online incoming KPI data, the current date is
assigned to the corresponding cluster according to the calen-
dar and clusters’ name. Afterwards, the cluster-specific model
is adopted to detect anomalies. In this way, for a given KPI,
similar daily patterns will share a model and different patterns
will not interfere with each other.

The contributions of the paper are summarized as follows.
• To the best of our knowledge, there are no related

works about complex periodicity adaptation for KPI
anomaly detection in the literature. This paper is the
first one to identify the problem of automatically adapt-
ing to various periodicity profiles for anomaly detection
methods. Besides, this paper proposes an automatic and
generic framework named Period to enable anomaly
detection methods to deal with KPIs of diverse periodicity
profiles.
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• We novelly propose to solve periodicity detection through
daily subsequences clustering, and successfully han-
dle the constrained periodicity drift problem. In detail,
we define an improved time series distance measure
named constrained shape-based distance (cSBD) and
adopt DBSCAN with density estimation to detect the
periodicity profile with high accuracy (over 0.95 on
average).

• To demonstrate the effectiveness of Period, we have con-
ducted extensive evaluation experiments using 56 labeled
KPIs with diverse periodicity profiles collected from a
large commercial bank. The results show that Period can
significantly improve the best F-score of several anomaly
detection methods by up to 0.66 through automatically
adapting them to various periodicity profiles.

The rest of the paper is organized as follows. Section II
introduces some background and related work. Section III
shows the design details about Period. Evaluation of periodic-
ity detection and anomaly detection adaptation are presented
in Sections IV and V, respectively. Section VI discusses some
limitations of our algorithm and future work. Finally, we
conclude this paper in Section VII.

II. BACKGROUND AND RELATED WORK

In this section, we mainly introduce some key concepts
used in this paper and some related work about KPI anomaly
detection and traditional periodicity detection.

A. Key Concepts

KPI: KPIs are collected continuously to describe the cur-
rent state of servers (low-level) or applications (high-level),
and ensure service quality and reliability. KPI is a kind of
time series data with the format of (timestamp, value) and can
be denoted as x = {x1, x2, . . . , xN }, where xi is the value
corresponding to time index i for i ∈ {1, 2, . . . ,N }, and N
is the number of data points of this KPI. KPI values can be
collected and calculated from Simple Network Management
Protocol (SNMP), syslogs, network traces, Web access logs
and other data sources.

KPI Anomaly: Anomalies refer to a subset of data points
in a KPI that do not conform to the expected behavior and
significantly differ from the normal data [2], [3], e.g., jitters,
slow ramp-ups, spikes and dips (labeled in red in Fig. 1).
Anomalies in KPIs often indicate potential failures on relevant
applications, such as server failures, server overload, network
failure, external attacks, etc.

Time Series Periodicity: Time series may contain multiple
seasonal cycles of different lengths [15], [16]. For exam-
ple, the KPI B shown in Fig. 3(b) exhibits both daily and
weekly cycles, which we called basic short-term seasonality
and whole long-term seasonality. In this paper, we assume
that the basic seasonality of KPI is one day (also discussed in
Section VI) and focus on detecting the whole long-term sea-
sonality. For the convenience of later discussions, except where
noted, season length, period and seasonality refer specifically
to the whole long-term seasonality.

B. KPI Anomaly Detection

KPI anomaly detection can be formulated as follows: for
a KPI x, given historical observations xt−T+1, . . . , xt , deter-
mine whether an anomaly occurs at time t (denoted by yt = 1).
An anomaly detection method typically computes a real-valued
score (called anomaly score) indicating the certainty of hav-
ing yt = 1, i.e., p(yt = 1|xt−T+1, . . . , xt ), instead of directly
computing yt . Human operators can affect whether to declare
an anomaly by choosing a threshold, where a data point with
a score exceeding this threshold indicates an anomaly.

As discussed in Section I, a rich body of literature exists on
KPI anomaly detection [1]–[11], including traditional anomaly
detectors, ensemble supervised learning algorithms and unsu-
pervised algorithms. The basic schema of traditional anomaly
detector works in the following way. When an anomaly detec-
tor receives an incoming KPI value, it internally produces a
forecast value. The absolute difference between the incoming
value and the forecast one is regarded as the anomaly score.
Ensemble supervised learning, such as Opprentice [3] and
EGADS [7], adopt the forecast values from various traditional
anomaly detectors as features to train a binary classifier (like
Random Forest in [3]), then for online KPI data, the classifier
will give a probability for each point indicating the certainty of
anomaly, i.e., p(yt = 1|xt−T+1, . . . , xt ). Unsupervised algo-
rithms directly model the raw KPI data and try to learn the
normal pattern of the KPI. The anomaly score can be com-
puted based on how well the current window of a given data
point follows the normal expected patterns. However, all the
above cannot deal with the KPIs with diverse periodicity pro-
files like Fig. 1 and Fig. 3 show, and can lead to many false
negatives and false positives (see Fig. 2) in real applications.

In addition to anomaly detection algorithms in academia,
there are also many anomaly detection products in indus-
try, including Anodot [17], Splunk [18], Datadog [19],
Dynatrace [20], Prometheus [21], Grok [22], Kibana [23], etc.
To the best of our knowledge, only Anodot proposes to adopt
Auto-correlation Function (ACF) to handle time series data
without prior knowledge of seasonality [24], and the weakness
of ACF will be discussed in Section II-C2. Other prod-
ucts ignore the influence of complex periodicity on anomaly
detection.

Therefore, it is in urgent need to design a generic and auto-
matic framework so as to adapt anomaly detection methods to
various periodicity profiles.

C. Traditional Periodicity Detection

To the best of our knowledge, this paper is the first one
to focus on the periodicity of KPIs for anomaly detection.
However, considering that KPI is a kind of time series, in
the field of traditional time series data mining, many efforts
have been devoted to the research of periodicity detection with
very different goals [25]–[28]. Generally, traditional period-
icity detection adopts the techniques in time series analysis
to model the raw data and output KPI’s season length (i.e.,
an explicit number, such as the length of day or week). Two
widely-used periodicity detection methods, Periodogram and
Auto-correlation Function, are introduced below [27].
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(a) (b) (c)

Fig. 4. Illustration of periodogram and auto-correlation. (a) KPI Data (T=one day, 48 points). Periodogram (one day, 48 points). (c) Auto-correlation (one
day, 48 points).

(a) (b) (c)

Fig. 5. Failure case of periodogram and auto-correlation. (a) KPI Data (T=one week, 2016 points). (b) Periodogram (one day, 288 points). (c) Auto-correlation
(one day, 288 points).

1) Periodogram: Given a KPI x with length N, suppose
that X is the Discrete Fourier Transform (DFT) of x, then
the periodogram P is provided by the squared length of each
Fourier coefficient:

P
(
fk/N

)
=

∥∥∥X
(
fk/N

)∥∥∥2
, k = 0, 1, . . . ,

⌈
N−1

2

⌉
(1)

where

X
(
fk/N

)
=

1√
N

N−1∑
n=0

x (n)e−
j2πkn

N (2)

We pick the frequency with the largest power of the peri-
odogram to discover the season length. For example, Fig. 4(a)
shows a two-week-long KPI with a half-hour monitoring
interval. Its season length is one day, i.e., T = 24 × 2 = 48
points. Fig. 4(b) shows the periodogram of this KPI, and the
red point denotes the largest power with frequency equals to
0.0208, thus the output season length is 1/0.0208 ≈ 48.

2) Auto-Correlation Function (ACF): Given a KPI x, for
different l lags, we have:

ACF (l) =
∑N−1

i=0 x (i)x (i + l)
N

, l = 1, 2, . . . , N−1
2 (3)

It is clear that the auto-correlation becomes high at certain
lags, i.e., T , 2T , 3T , . . . Typically, as Fig. 4(c) shows, the lag
corresponding to the first peak in the ACF is regarded as the
KPI’s period (labeled in the red point).

However, the above two approaches perform well only on
time series with a short period (e.g., one day) and become a
little inaccurate for a longer period. Specifically, each element
of the periodogram provides the power at frequency k/N (at
period N/k). It is obvious that DFT bins are fine-grained for the
short period and coarse-grained for the long period, for exam-
ple, for a time series of length N = 600, the DFT bins will
be (N /1,N /2,N /3, . . . = 600, 300, 200, . . .). Therefore, the
accuracy of detected period deteriorates for longer period due
to the increasing width of DFT bins (N/k). Another problem
is spectral leakage, which causes frequencies that are not

multiples of the DFT bin width, to disperse over the entire
spectrum [27]. Besides, auto-correlation is also affected by
longer lags, since the last l points of time series are padded
with zero when computing auto-correlation, which will lead to
lower correlation. More importantly, both approaches are sig-
nificantly impacted by the imperfect or ambiguous periodicity
and noises or anomalies.

Fig. 5 provides a case where the three-week-long KPI has
an one-week long-term seasonality with 5-minute monitoring
interval (T = 7 × 24 × 12 = 2016 points). However, both peri-
odogram and auto-correlation only detect the basic short-term
seasonality (one day) and fail to detect the whole long-term
seasonality correctly (one week). This is because the patterns
within weekdays/weekends are very similar and they cannot
distinguish the difference between weekdays and weekends
accurately.

3) Summary: The above two methods can only provide an
explicit (and often inaccurate) season length, while in prac-
tice the complex or imperfect periodicity profile cannot be
characterized by a fixed number, e.g., the KPI in Fig. 1 has
complex periodicity rather than a day or a week. In summary,
traditional methods are not able to handle diverse periodicity
profiles for KPI anomaly detection.

III. DESIGN OF Period

This section first presents the core idea and overview
of Period, then introduces Period’s two key components
Periodicity Detection and Anomaly Detection Adaptation in
detail.

A. Core Idea and Overview

The core idea of Period is transforming the anomaly detec-
tion on a given KPI with unknown periodicity profile into
anomaly detection on k sub-KPIs with “clear daily periodic-
ity”, and the k sub-KPIs can be acquired by our proposed daily
subsequences clustering technique. Fig. 6 presents an intuitive
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(a)

(b)

Fig. 6. A toy example to illustrate Period’s core idea. (a) Core idea.
(b) Concatenating daily subsequences into sub-KPI.

example to illustrate the core idea. Daily subsequences cluster-
ing will discover the number of different daily patterns in the
given KPI (k = 3 in this example). We can assign a specific
name to represent each cluster (e.g., work day, off day and
Spring Festival in this example). Then the daily subsequences
in one cluster are concatenated in chronological order into a
new sub-KPI with clear daily periodicity as shown in Fig. 6(b).
Next, we train a separate anomaly detection (AD) model (e.g.,
Holt-Winters (HW)) for each cluster. Afterwards, for the cur-
rent date, Period first queries the official holiday calendar to
see whether it is a work day, off day, or Spring Festival, and
assigns the data into the correct cluster. For example, if the
current day is January 31th 2017, during the Spring Festival,
AD Model 3 will be adopted for anomaly detection.

The overall framework of Period shown in Fig. 7 has
two major components. First, historical KPI data is used for
offline periodicity detection. In detail, the historical KPI is cut
into daily subsequences, then the model adopts constrained
shape-based distance (cSBD) as distance measure to deal with
constrained periodicity drift and DBSCAN with density esti-
mation to cluster these subsequences. For each cluster, we can
assign a name for it based on the official holiday calendar as
shown in Algorithm 1. Then we concatenate all daily sub-
sequences in a cluster into a sub-KPI and train an anomaly
detection model independently for each sub-KPI. The second
step is online anomaly detection adaptation, which aims to
choose the correct AD model to detect anomalies by assign-
ing into the corresponding cluster according to the clusters’
name and current date. In this way, similar daily patterns in a
KPI will share a model and different patterns will not interfere
with each other, so that Period can make full use of histori-
cal data and latest data to detect anomalies more accurately.
The historical data for offline periodicity detection are updated
periodically, e.g., monthly, so that the newly appeared daily

Algorithm 1: Assigning Specific Names for Clusters
Input: Clustering results and public holiday calendar
Output: Clusters with specific names

1 Sort the clusters in ascending order according to the
number of samples in the cluster;

2 k = the number of clusters;
3 i = 1;

/* Assigning names for first k − 1
clusters */

4 while i < k do
5 for each daily subsequence in cluster i do
6 Get the date of this daily subsequence;
7 Extract date features (day of week, day of month,

off day or not, festival or not, etc.);
8 end
9 for each feature f do

10 for each value v of feature f do
11 compute ratio(f , v) = #f =v in cluster i

#f =v in all clusters
12 end
13 end
14 The f = v with the maximum ratio is the name of

cluster i;
15 i + = 1;
16 end
17 The last cluster k is named as remaining days that do not

belong to first k − 1 clusters.

pattern can be periodically incorporated into the newly learned
offline model.

B. Offline Periodicity Detection

1) Data Preprocessing: Before daily subsequences clus-
tering, we first need to preprocess the KPI data. KPIs are
monitored with certain interval (e.g., every minute), but occa-
sionally, a monitoring system does not receive data, leading to
missing values. Fortunately, the percentage of missing values
usually is very small according to our observation. We simply
use linear interpolation to fill them based on their adjacent
data points. Besides, considering that noises and anomalies
in historical data may mislead the clustering result, we apply
Moving Average [6] to smooth the KPI, so as to remove noises
and weaken the negative impact of anomalies. Notice that data
preprocessing is conducted on offline historical data, not on
online data on which we need to detect anomalies. Here we
choose the window size of MA as half an hour based on our
experience and experiments. We found that if the window size
is too small, noise and anomalies cannot be eliminated com-
pletely. And a too large window will destroy the original shape
and information of KPI. After that, the KPI is cut into daily
subsequences (i.e., from 0:00 to 24:00), which will be used in
the following steps.

2) Distance Measure: The first step of daily subsequences
clustering is selecting an appropriate distance measure. Before
reviewing the existing time series similarity measures, we
first introduce a common phenomenon in practice, i.e., con-
strained periodicity drift. In detail, for some real applications,
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Fig. 7. Overall framework of Period.

the task is triggered manually, instead of triggered by the
script automatically, which leads to time shift among daily
subsequences. According to our domain knowledge, manual
triggering time is generally within a tolerable range of time,
e.g., one daily task is triggered two hours after the morning
office hour starts every work day. Thus a threshold needs to
be added to restrict the range of time shift. Fig. 8 depicts an
intuitive example. It is obvious that the three peaks all hap-
pen at different times in three days, but they are all between
10:00 and 14:00. Consequently, the distance measure in our
algorithm needs to tackle the constrained periodicity drift
problem.

Many time series distance measures have been proposed
in the literature. Lp-norms [29] are a group of widely-used
distance measures thanks to their simplicity and efficiency,
but they are sensitive to noises and distortions along the
time dimension. Dynamic Time Warping (DTW) [30] is
well-known for its robustness against time shift and scaling
distortion, but has high computational complexity. Generally, it
takes O(m2) to compute the distance between two sequences
with length m, which makes it impractical to deal with a large
number of long sequences (m is the length of daily subse-
quence in our case). Cross-correlation [31], e.g., shape-based
distance (SBD) [32] can natively handle time shift and its com-
putational complexity can be reduced to O(m log(m)) through
Convolution Theorem and Fast Fourier Transform. Thus cross-
correlation-based metric can be a suitable distance measure in
our algorithm. In order to cope with constrained periodicity
drift problem, we define an improved distance measure named
constrained SBD (cSBD) based on SBD.

Given two sequences �x = (x1, x2, . . . , xm ) and �y =
(y1, y2, . . . , ym ), in order to achieve shift-robustness, cross-
correlation keeps �y static and slides �x over �y to compute the
inner-product for each shift s. The sequence �x with a shift s
is denoted as:

�x(s) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(

|s|︷ ︸︸ ︷
0, . . . , 0, x1, x2, . . . , xm−s), s ≥ 0

(x1−s , x1−s+1 · · · , xm−1, xm , 0, . . . , 0︸ ︷︷ ︸
|s|

), s < 0

(4)

There is no restriction on shift s in original SBD [32]. In our
problem, in order to deal with constrained periodicity drift, we
define a shift threshold w (e.g., 2 hours) and set s ∈ [−w ,w ].

Fig. 8. An intuitive example about constrained periodicity drift. The three-
day-long fragment of a KPI is plotted on the left, and the three daily
subsequences are plotted separately on the right.

When all possible �x(s) are considered, we get CCs(�x , �y) as
the similarity between sequences �x and �y with a time shift s.
It is defined as:

CCs(�x , �y) =
{∑m−s

i=1 xi · ys+i , s ≥ 0∑m+s
i=1 xi−s · yi , s < 0

, s ∈ [−w ,w ]

(5)

The cross-correlation is the maximum value of CCs(�x , �y),
which means the distance between �x and �y at the optimal
shift s. In practice, a normalized version of cross-correlation
(NCC) is often used to limit the values to be within [−1, 1],
where 1 indicates a perfect similarity and −1 indicates the two
sequences are completely different. NCC is defined as follows:

NCC (�x , �y) = max
s

CCs(�x , �y)
‖�x‖2 · ‖�y‖2

, s ∈ [−w ,w ] (6)

Then we can define cSBD based on NCC:

cSBD(�x , �y) = 1 − NCC (�x , �y) (7)

cSBD takes values between 0 and 2, where 0 indicates perfect
similarity. A smaller cSBD value means higher similarity. The
effectiveness of cSBD compared with other distance measures
will be demonstrated in Section IV-C.

3) Clustering: Many algorithms have been proposed for
time series clustering [33]. In general, all approaches modify
existing algorithms, either by replacing the default distance
measures with a version that is more suitable for time series
(raw-data-based methods) or by extracting several features
from raw time series so that they can be directly used in
classical algorithms (feature-based and model-based methods).
We argue that feature-based and model-based methods often
make strong assumptions (e.g., assuming that time series can
be modeled using Gaussian mixture [34]) and lose much
information in feature extraction. Therefore, we follow a
raw-data-based approach in our algorithm.
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Two popular raw-data-based methods are partitional and
density clustering. K-means [35] and k-medoids [36] are
widely-used partitional methods due to their simplicity and
effectiveness. However, the number of clusters k and the initial
centers of each cluster need to be predetermined, which will
result in unstable results with different initial centers. Besides,
k-means requires the computation of artificial sequences as
centroids, which hinders the easy adaptation of distance mea-
sures other than Euclidean distance. Density methods like
DBSCAN [37] find dense regions separated by low-density
areas to form clusters. A cluster is expanded if its neigh-
bors are dense, i.e., others that are similar to its core will
be absorbed into it. We opt to use DBSCAN for the following
two reasons. First, since KPIs are collected from various appli-
cations and systems, operators have no prior knowledge about
the number of clusters, while DBSCAN can infer k based on
the data. Second, it can discover clusters of arbitrary shape
and can work with most distance measures. As a comparison,
k-means usually discovers spherical clusters and is applicable
only to Euclidean distance. The effectiveness of DBSCAN will
be demonstrated in Section IV-D.

DBSCAN has two input parameters: the minimum size of
a cluster minPts and density radius ε, which is the maximum
distance between samples (daily subsequences in our case) in a
cluster. The key idea of DBSCAN is to find the cores in dense
regions, and then expand cores by transitivity of distance to
form clusters. A core p is defined as a sample which has at
least minPts samples within a distance of ε from it (excluding
p). Only cores can be used to expand clusters. In other words,
only samples with the distance smaller than ε from a core
can be absorbed into a cluster. Any sample that has fewer
neighbors than minPts is declared to be an outlier that is not
associated with any cluster.

We adopt the elbow method to determine density radius
ε [38]. If ε is too small, a large part of data cannot be
clustered; whereas for a too high ε, clusters will be merged
and the majority of samples will be in the same cluster. For
minPts = c, to determine the parameter ε, we need to look at
the behavior of the distance from the sample to its c-th nearest
neighbor, which is called c-dis. The c-dis is computed for all
samples, then all c-dis values are plotted in descending order
as shown in Fig. 9 (c = 4). A flat area indicates the density
around a number of samples is consistent, while a steep area
means significant density changes. The elbow point (denoted
by the red point) is the junction between steep area and flat
area, and the corresponding c-dis value is a suitable density
radius ε [39]. However, [37] argued that it is very difficult to
discover the elbow point automatically and proposed to fol-
low an interactive approach for determining the threshold point
by users. In our algorithm, in order to find the elbow point
automatically, considering the c-dis values in the flat area are
similar and all the distances are normalized between 0 and 2,
we set a slope threshold (0.001 is used) conservatively. That
is to say, we check the difference between two adjacent c-dis
values from left to right in c-dis graph. Once the difference is
smaller than 0.001, the point is regarded as elbow point and
the c-dis value is the optimal density radius. We set minPts = 4
as suggested in [37], since experiments in [37] indicate that

Fig. 9. 4-dis graph with 30 samples. The steep area indicates sharp density
changes and the red point denotes elbow point.

c-dis graphs for c > 4 do not significantly differ from the 4-dis
graph and they need considerably more computation.

Furthermore, the computational complexity about offline
periodicity detection needs to be considered. The time com-
plexity of computing cSBD distance is O(n2m log m) [32],
where m is the length of daily subsequences and n is the
number of daily subsequences. The clustering with DBSCAN
requires O(n logn), and the time complexity of density estima-
tion is O(n). Therefore, the total running time largely depends
on the complexity of computing cSBD distance.

C. Adaptation for Anomaly Detection

Through the above daily subsequences clustering, each clus-
ter denotes a kind of daily pattern. Afterwards, we need to
assign a specific name to represent each cluster so that the
incoming data can be assigned into the correct cluster. The
detailed assigning strategy is displayed in Algorithm 1. First,
the clusters are sorted in ascending order according to the
number of samples in this cluster. This is because the clusters
with fewer samples generally represent special daily patterns,
and are more easily identified by dates. Then the date fea-
tures for each daily subsequence are extracted in first k − 1
clusters. For each value v of each feature f, we compute
ratio(f , v) = #f =v in cluster i

#f =v in all clusters for each pair of (f, c). The
f = v with the maximum ratio is the name of cluster i. The
key idea here is using the frequent feature in cluster i while
it is infrequent in other clusters. For the last cluster k, we do
not need to assign a name for it specifically, since the last
cluster with most samples represents the most common daily
pattern, thus we can name it as the remaining days that do
not belong to first k − 1 clusters. For example, the names
of two clusters of KPI D are the day of week is “Friday”
and “remaining days (not Friday)”. Notice that we only list
some common date features here, and new date features can
be added into the model according to the real applications,
e.g., business promotion days.

Afterwards, subsequences in a cluster can be concatenated
into a new sub-KPI with perfect daily periodicity, which can be
solved with original anomaly detection methods, thus we can
apply anomaly detection methods (e.g., Holt-Winters, Donut)
on each cluster, respectively. For online incoming KPI data,
it can be assigned into the correct cluster according to the
clusters’ name and public holiday calendar, then the corre-
sponding model is adopted to detect anomalies. In summary, in
order to tackle diverse periodicity adaptation for KPI anomaly
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TABLE I
SIX KPIS IN OUR EXPERIMENTS, WHERE n IS THE NUMBER OF DAYS

AND k IS THE TRUE NUMBER OF DIFFERENT DAILY PATTERNS

detection problem, we novelly transform the anomaly detec-
tion on a KPI with unknown periodicity profile into anomaly
detection on k sub-KPIs with clear daily periodicity, and the k
sub-KPIs are obtained through daily subsequences clustering.

IV. EVALUATION OF PERIODICITY DETECTION

This section mainly focuses on evaluating the performance
of periodicity detection, i.e., daily subsequences clustering.
We first introduce the datasets and the metric used in the
experiments. Then we show the effectiveness of our cluster-
ing algorithm by comparing with other distance measures and
clustering algorithms.

A. Datasets

We collected six KPIs named A,B, C,D, E ,F from a large
commerical bank through their real-time monitoring systems.
The details about these KPIs are displayed in Table I, where
n is the number of days and k is the true number of different
daily patterns. For the purpose of evaluating the performance
of periodicity detection, the experienced operators carefully
check the number of different daily patterns of each KPI and
provide the value of k. To present the periodicity profiles of
these six KPIs intuitively, we plot a 2-week-long fragment of
each KPI, which has been presented in Fig. 3. In detail, KPI
A (k = 3) has three different daily patterns, i.e., work days,
off days (including New Year’s Day) and Spring Festival. KPI
B and KPI C (k = 2) behave differently between work days
and off days. KPI D (k = 2) has a peak on every Friday and
other days behave similarly. KPI E (k = 4) has an increas-
ing peak from Thursday to Sunday. For KPI F (k = 3),
Monday, Wednesday and Friday are different from other days,
and Chinese National Day (from Oct 1 to Oct 7) also behaves
differently. Besides, KPI A,B, C, E have the periodicity drift.

From Table I, we can observe that the same monitoring
indicator of different services have different periodicity pro-
files, e.g., CPU utilization (KPI B,D, E) and TPS (KPI A,F).
Therefore, it is infeasible for operators to manually check or
predefine the periodicity profile for every monitoring indicator
due to diverse services. Here we only take these six representa-
tive KPIs as examples to prove the robustness and effectiveness
of our clustering algorithm. We are confident that the six KPIs
are general enough to represent other kinds of KPIs, and we
use 50 more KPIs to evaluate the periodicity adaptation for
anomaly detection in Section V.

B. Metric

In order to quantitatively evaluate Period’s clustering
performance, we adopt the following two popular metrics.

Clustering Accuracy (ACC) discovers the one-to-one rela-
tionship between resulting clusters and true classes, and mea-
sures the extent to which each cluster contains subsequences
from the corresponding class. It is defined as follows:

ACC =
∑n

i=1 δ(map(ri ), li )
n

where ri denotes the predicted cluster label of daily subse-
quence xi and li denotes the true class label of xi , n is the
total number of daily subsequences, and δ(x , y) is the delta
function that equals one if x = y and equals zero otherwise,
and map(ri ) is the permutation mapping function that maps
each cluster label ri to the equivalent true class label.

Normalized Mutual Information (NMI) is used for deter-
mining the quality of clusters. Given a clustering result, the
NMI is estimated by:

NMI =

∑kd
i=1

∑k
j=1 ni ,j log ni,j

ni n̂j√(∑kd
i=1 ni log ni

n

)(∑k
j=1 n̂j log n̂j

n

)

where kd is the number of resulting clusters, k is the number of
true classes, ni denotes the number of subsequences contained
in the cluster i (1 ≤ i ≤ kd ), n̂j is the number of subsequences
belonging to true class j (1 ≤ j ≤ k), and ni ,j denotes the
number of subsequences that are in the intersection between
cluster i and the class j [40].

Besides, we record kd denoting the number of clusters found
by clustering algorithm and compare with the true k in Table I.
The running time is also recorded to evaluate the efficiency of
the clustering algorithm.

C. Comparison With Other Distance Measures

We compare cSBD with another two popular distance mea-
sures, i.e., Euclidean distance (ED) and constrained Dynamic
Time Warping (cDTW) [41], to illustrate the effectiveness of
cSBD. The comparison results of ACC, NMI, kd and running
time are displayed in Fig. 10. and Table II (rows 3-5).

Clearly, cSBD with DBSCAN finds the number of clus-
ters accurately (k = kd ) and outperforms ED on KPI A, B,
C and E . This is because ED cannot handle the time shift
problem, as showcased in Fig. 8, and these KPIs exhibit peri-
odicity drift. When calculating distance, ED assumes the i-th
point in one sequence is aligned with the i-th point in the
other, thus they are sensitive to small distortions along the
time dimension. For KPI D and F without periodicity drift,
ED performs as well as cSBD. Besides, we can observe that
cSBD also behaves better than cDTW on some KPIs. cDTW
calculates the minimized accumulated aligning cost as their
distance, thus it has the ability to tackle the constrained period-
icity drift. However, cDTW has the risk of distorted alignment
in the process of dynamic programming (just like overfitting).
Moreover, the running time is mainly affected by the num-
ber of clustering samples (n in Table I) and the length of
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TABLE II
RUNNING TIME (SECONDS) AND kd COMPARISONS OF DIFFERENT DISTANCE MEASURES AND CLUSTERING ALGORITHMS

Fig. 10. ACC and NMI comparisons of different distance measures and
clustering algorithms.

daily subsequence (m). Since both KPI A and F have an one-
minute monitoring interval, their running time is much longer
than others. Although compared with original DTW which has
O(m2) computational complexity, cDTW only needs O(wm)
time where w is the threshold of constrained periodicity drift
range just like w in cSBD. However, as shown in Table II,
cDTW still suffers from high computational cost, about 2
orders of magnitudes higher than cSBD.

In summary, the results reveal that taking into account both
performance and efficiency, cSBD is the best distance measure
in our problem.

D. Comparison With Other Clustering Algorithms

In order to demonstrate the effectiveness of DBSCAN, we
compare it with another two popular clustering algorithms,
i.e., k-mediods [42] and spectral clustering [43]. K-medoids
divides the data into groups and attempts to minimize the
distance between samples labeled to be in a cluster and a
sample designated as the center of that cluster. The reason
why k-means is not compared here is that k-means adopts
the artificial sequences as new centroids, which hinders the
easy adaptation of distance measures other than Euclidean dis-
tance. Considering that k-mediods is an unstable algorithm,
we run the experiment for ten times, then compute the aver-
age ACC and NMI. Spectral clustering derived from graph

theory makes use of the spectrum of the similarity matrix of
the data to perform dimensionality reduction before cluster-
ing in fewer dimensions. Besides, since both k-mediods and
spectral clustering need k as their input variables, we adopt
Silhouette Analysis [44] to determine the best k.

Fig. 10 and Table II (rows 6-7) present the comparison
results. Clearly, DBSCAN consistently outperforms other clus-
tering algorithms on all KPIs and discovers the number of
clusters accurately (k = kd ). The performance of k-mediods
greatly depends on the selection of initial cluster center, and
spectral clustering is not suitable for high dimensional data.
Moreover, k-mediods and spectral clustering need to run sev-
eral experiments with different k to determine the best k by
Silhouette Analysis, but DBSCAN can infer k based on the
data by itself.

In summary, the results demonstrate that DBSCAN is the
most suitable clustering algorithm in our problem.

V. EVALUATION OF ANOMALY DETECTION ADAPTATION

This section mainly focuses on evaluating the performance
and robustness of anomaly detection adaptation to diverse peri-
odicity profiles. We first introduce the datasets and metric.
Then anomaly detection methods adopted in our evaluation
are presented. Finally, we present the comparison results and
provide a detailed empirical analysis.

A. Datasets

In terms of datasets, in addition to the 6 KPIs introduced
in Section IV-A, another 50 KPIs are collected from a large
commercial bank in order to further show the performance
of Period. We collected these representative KPIs from the
bank’s IT environment which contains more than 200 appli-
cation systems and more than 5000 virtual machines. These
KPIs are chosen based on the following principles. 1) These
KPIs fall into two categories: one is the transaction indicators
(high-level) such as transactions per second and order volume,
which are obtained by Application Performance Management
(APM) or aggregating transaction logs from each application
entry; the other is monitoring indicators of virtual machines
(low-level) such as CPU utilization and memory utilization.
2) These KPIs contain various kinds of periodicity profiles,
which are generic enough for evaluation. 3) All of KPIs have
a time span of about 3-6 months. The first two months of each
KPI are used as historical data for offline periodicity detection,
and the rest (1-3 months) is used to evaluate online anomaly
detection with periodicity adaptation. In practice, it would be

Authorized licensed use limited to: MICROSOFT. Downloaded on June 01,2023 at 14:22:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: AUTOMATIC AND GENERIC PERIODICITY ADAPTATION FOR KPI AD 1179

Fig. 11. Illustration of the strategy for modified metric. The first row is
the truth with 10 contiguous points and two anomalous segments highlighted
in the shaded squares. The detector scores are shown in the second row.
The third row shows the point-wise detector results with a threshold of 0.5.
The fourth row shows the detector results after adjustment. The last row
indicates each point is true positive (TP), false positive (FP), true negative
(TN) or false negative (FN). We shall get precision = TP

TP+FP = 0.6,

recall = TP
TP+FN = 0.6 and F-score 0.6.

better if the historical data is long-term enough (e.g., one year)
to include all kinds of daily patterns. 4) In order to ensure the
high quality of data, these KPIs do not have too many missing
points. Therefore, we are confident that these 56 KPIs are rep-
resentative enough to demonstrate the performance of Period.
Besides, experienced operators have labeled these KPIs care-
fully as the ground truth. Notice that we only display detailed
results about the 6 KPIs in the interest of space, and results
of other 50 KPIs are displayed briefly.

B. Metric

In general, anomaly detection methods compute an anomaly
score for each data point. If the anomaly score for the point
is larger than the threshold, an alert should be triggered. In
this way, we can compute the precision and recall corre-
sponding to each threshold. F-score as the harmonic mean
of precision and recall can be computed as 2×precision×recall

precision+recall .
However, threshold selection in anomaly detection is a very
tricky problem, since the best thresholds are different among
different KPIs. In general, there are several popular threshold
selection methods, for example, choosing the threshold that
performs best in training set. In this paper, in order to avoid
the threshold selection problem, we may enumerate all thresh-
olds and use the best F-score as the metric, which indicates the
best possible performance given an optimal threshold. In prac-
tice, the threshold can be decided by operators based on their
knowledge and experience. Moreover, since operators do not
care about the point-wise alerts in real applications, instead
they prefer to trigger an alert for any time in a continuous
anomalous segment. Thus following [4], we adopt the modified
anomaly detection metric. In detail, if any point in an anoma-
lous segment in the ground truth can be detected (over a given
threshold), we say all points in this segment are treated as they
have been detected. Meanwhile, the points outside the anoma-
lous segments are treated as usual. The precision, recall, and
F-score are then computed accordingly. This modified metric
is illustrated in Fig. 11. Therefore, the modified best F-score
is adopted as evaluation metric in the following experiments.

C. Anomaly Detection Methods in Experiments

Given different anomaly detection methods perform dif-
ferently on different KPIs [3], in order to show Period’s

TABLE III
ANOMALY DETECTION METHODS USED IN OUR EXPERIMENTS. THE

FIRST COLUMN IS THE BASIC ANOMALY DETECTION METHODS. THE

SECOND COLUMN IS THE VARIANTS OF THE BASIC METHODS

COMPARED IN EXPERIMENTS

robustness and generality, we choose five widely-used
anomaly detectors, i.e., Holt-Winters (HW) [1], Time Series
Decomposition (TSD) [11], Difference (Diff) [3], Moving
Average (MA) [6], Exponential Weighted MA (EWMA) [5],
and a state-of-the-art unsupervised anomaly detection algo-
rithm Donut [4] to demonstrate the effectiveness of Period.
Notice that we only take these six methods as examples, but
Period is not limited to these anomaly detection methods and
instead it can be applied to many other approaches.

Table III describes anomaly detection methods used in
experiments. Since HW, TSD and Diff need the season length
of KPI as their input parameters, *-day and *-week mean that
the seasonality parameters are configured as the length of day
and week, respectively. MA, EWMA and Donut does not need
the season length as parameter, and “MA, EWMA, Donut”
in Table III column 2 means the original anomaly detection
approach. *-Period means applying Period framework to these
anomaly detection methods (see Fig. 6 and Fig. 7). In detail,
based on the offline daily subsequences clustering results on
historical data, *-Period prepares k separate anomaly models
for k historical sub-KPIs independently. Then for testing set,
the data is assigned to the corresponding cluster according to
the calendar and current date, and the corresponding model is
used to detect anomalies.

D. Results and Analysis

Fig. 12 shows the best F-score comparison between Period
and compared methods on six KPIs (Table I). Besides, in order
to further illustrate the effectiveness of Period, the best F-score
of another 50 KPIs with diverse periodicity profiles are dis-
played in Fig. 13 with box-plot in brief. Based on the results,
we have five key observations as follows.

First of all, it is obvious that applying Period to anomaly
detection methods can significantly improve the best F-score.
In detail, it can improve the traditional anomaly detectors (HW,
TSD, Diff, MW, EWMA) by up to 0.66, and improve the state-
of-the-art unsupervised anomaly detection algorithm Donut by
up to 0.2. Besides, by analyzing the best F-score of Period
in comparison with baselines using the Wilcoxon test [45],
we can make a conclusion that Period performs better than
baselines with a 99% confidence level. Furthermore, in order
to investigate the effect of the threshold on performance, we
take HW and Donut as examples and plot the ROC graphs on
KPI A to demonstrate the True Positive Rate (TPR) and False
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Best F-score of Period in comparison with baseline algorithms on six KPIs. (a) Holt-Winters. (b) Time Series Decomposition. (c) Difference.
(d) Moving Average. (e) Exponential Weighted MA. (f) Donut.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Improved performance by Period on another 50 KPIs. (a) Holt-
Winters. (b) Time Series Decomposition. (c) Difference. (d) Moving Average.
(e) Exponential Weighted MA. (f) Donut.

Positive Rate (FPR) under different thresholds. As displayed
in Fig. 14, it is clear that with the increase of the threshold,
*-Period with larger Area Under Curve (AUC) can achieve
higher TPR and lower FRP than the baselines. In summary,
the above observations show that Period is robust and generic

(a) (b)

Fig. 14. ROC graphs of Holt-Winters and Donut on KPI A. (a) Holt-Winters.
(b) Donut.

enough to automatically adapt KPI anomaly detection methods
to diverse periodicity profiles.

Second, as aforementioned, the selection of seasonality
parameter has a great impact on anomaly detectors (HW,
TSD, Diff) and it is labor intensive to configure the season-
ality parameter manually when facing a large number KPIs.
Besides, although some KPIs have perfect weekly periodic-
ity, such as KPI B and C, *-week methods still perform not
ideally on these KPIs. This is because there are also similar
daily patterns within a season, for example, weekdays in KPI
B. Simply using the length of week as the seasonality param-
eter will ignore the similarity within a season and lose much
information. However, with Period, all similar patterns will be
assigned into a cluster and share an anomaly detection model,
so that the historical similar patterns can be fully utilized.

Third, despite MA and EWMA do not need the season
length as parameters, various periodicity profiles also have a
marked impact on the performance of them. This is because
both MA and EWMA are time series prediction models which
make strong assumptions on the stationarity and seasonality
of input KPI data, but imperfect or complex periodicity will

Authorized licensed use limited to: MICROSOFT. Downloaded on June 01,2023 at 14:22:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHAO et al.: AUTOMATIC AND GENERIC PERIODICITY ADAPTATION FOR KPI AD 1181

(a)

(b)

Fig. 15. A toy example to show the anomaly scores of Donut, with and
without Period. (a) Donut. (b) Donut-Period.

destroy the stationarity and seasonality. However, with Period,
each sub-KPI with perfect daily periodicity can satisfy the
assumption and lead to better performance.

Fourth, despite Donut performs better and more stable than
other five anomaly detectors, it is also a little sensitive to the
diverse periodicity profiles, since the original Donut has no
time or date information in its input variables, thus it is diffi-
cult for Donut to capture the periodicity profile while learning
the normal pattern to detect anomalies in training data. While
with Period, we can concatenate all subsequences in a clus-
ter into a new sub-KPI with clear daily periodicity and apply
original Donut on each seasonal sub-KPI respectively, which
can improve the best F-score by up to 0.2.

Fifth, even though different anomaly detection methods
perform differently on different KPIs, Period can improve
the performance of all method. For example, the absolute
best F-score of some *-Period algorithms are not very good
(e.g., TSD-Period, Diff-Period and MA-Period in KPI A, B)
because these original detectors’ incapability to deal with these
KPIs. Even so, Period can still improve their best F-score
by up to 0.41. On the other hand, original Donut is able to
deal with KPI A and B reasonably well, and Period can still
improve its best F-score by up 0.2.

Furthermore, in order to illustrate how Period detects
anomalies more accurately, we take the KPI B as an example
and plot the anomaly scores (normalized between 0 and 1)
given by Donut, with and without Period. As Fig. 15 shows,
the original Donut without Period (Fig. 15(a)) regards week-
ends (Dec. 23 and Dec. 24) as unexpected patterns and gives
relative high anomaly scores, which will lead to some false
alarms. However, with the adaptation of Period (Fig. 15(b)),
weekdays and weekends are used to train a Donut model sep-
arately, which will give more reasonable anomaly scores and
detect anomalies more accurately.

In conclusion, the above results fully demonstrate that
Period is robust and generic to automatically adapt KPI
anomaly detection methods to diverse periodicity profiles.

E. Comparison With Multivariate Time Series
Anomaly Detection

One intuitive method to solve KPI anomaly detection with
diverse periodicity profiles is multivariate time series anomaly

Fig. 16. Best F-score comparison between Donut-Period and MTSAD.

detection (MTSAD for short) [46]–[48] by encoding date fea-
tures into variables (see Algorithm 1, day of week, off day
or not, etc). Considering that Donut is the state-of-the-art
unsupervised KPI anomaly detection and shows good and sta-
ble performance in the above experiments, we compare the
performance of Donut-Period with one of the state-of-the-art
MTSAD method LSTM-NDT [46]. The results on six KPIs
are displayed in Fig. 16.

It is clear that Donut-Period achieves a much better F-score
compared with MTSAD. We have the following observations
based on the results. First, MTSAD mainly focuses on the
overall status of an entity containing multiple metrics (entity-
level) and univariate time series anomaly detection only aims
to detect anomalies in one metric (metric-level) [46]–[48].
In our scenario, it may be a little inappropriate to solve the
problem with MTSAD. Essentially, we only need to detect
anomalies in the raw KPI (metric-level) instead of entity-
level. Although we get multivariate time series by encoding
date features into variables, these date feature time series are
not metrics to characterize the status of an entity, and it may
be unreasonable to encode discrete variables into time series.
Besides, the multi-dimensional vector in our problem only
contains one raw KPI variable and several date feature vari-
ables, and the value of raw KPI only plays a small role in the
vector, which may affect the performance of the model and fail
to detect anomalies. Second, the majority of popular MTSAD
algorithms in recent years are based on neural network and
suffer from high computational complexity. According to our
observation, it takes about several hours to train the LSTM-
NDT model. Third, compared with MTSAD, our proposed
model Period is more intuitive and enhances the interpretabil-
ity. It can discover special days with different patterns for
operators.

In summary, MTSAD and Period tackle KPI anomaly detec-
tion with diverse periodicity profiles from different angles.
More specifically, MTSAD tries to proposes a generic anomaly
detection model incorporating date information to solve the
problem, while Period is based on the existing anomaly detec-
tion methods and aims to enable these methods to adapt to
diverse periodicity profiles. However, existing MTSAD meth-
ods are not applicable to the problem. In our future work,
we may try other deep learning models incorporating date
information based on the idea of MTSAD.

VI. DISCUSSION AND FUTURE WORK

Period has two main limitations. First, Period assumes that
the basic seasonality of KPI is one day, so we can cut the
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whole KPI into daily subsequences directly. It is intuitive
because most KPIs are associated with daily human activities,
for example, the transactions per second of an Internet bank is
higher in the day time than that at night in a common diurnal
cycle. However, Period cannot handle a KPI with arbitrary sea-
sonality such as monthly and yearly. Second, we demonstrate
the effectiveness of Period only on the 56 KPIs collected from
the bank’s IT systems. However, we cannot guarantee Period
to be able to always perform well on all types of time series
data. For example, Period cannot be applied simply to KPIs
with both trend pattern and periodic pattern, and detrending
preprocessing is needed.

About the future work, as we mentioned before, Period can-
not handle a KPI with arbitrary seasonality such as monthly
and yearly. We may consider designing an algorithm to dis-
cover the basic seasonality automatically (e.g., Periodogram,
ACF or other methods) and divide subsequences accord-
ing to the detected basic seasonality. Second, it would be
more convincing to use more KPIs from other Internet-based
applications (e.g., search engine and online shopping) or var-
ious time series data in other domains, so that we can find
some cases that our algorithm cannot handle and improve
it to be more generic. Third, we may consider designing a
more effective model based on the idea of multivariate time
series anomaly detection or trying other deep learning models
incorporating date information to solve the problem.

VII. CONCLUSION

In this paper, we present an automatic and generic frame-
work called Period to enable anomaly detection methods to
deal with KPIs with diverse periodicity profiles. This is the
first work to study this problem, to the best of our knowledge.
The core idea of Period is transforming the anomaly detection
on a given KPI with unknown periodicity profile into anomaly
detection on k sub-KPIs with clear daily periodicity, and the k
sub-KPIs can be acquired by our proposed daily subsequences
clustering technique. Based on that, Period successfully detect
periodicity profiles and distinguish different daily patterns with
a high accuracy about 0.95 on average. More importantly, our
evaluation using 56 real-world KPIs demonstrates that Period
can significantly improve the best F-score by up to 0.66 for
several anomaly detection methods.

We believe Period is robust and generic enough to assist
existing anomaly detection methods in adapting diverse peri-
odicity profiles automatically, so as to detect anomaly more
accurately and ensure more reliable service in real applica-
tions.
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