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ABSTRACT
Cloud failures have been a major threat to the reliability of cloud
services. Many failure prediction approaches have been proposed
to predict cloud failures before they actually occur, so that proac-
tive actions can be taken to ensure service reliability. In industrial
practice, existing failure prediction approaches mainly focus on
utilizing state-of-the-art time series models to enhance the per-
formance of failure prediction but neglect the training strategy.
However, as curriculum learning points out, models perform better
when they are trained with data in an order of easy-to-difficult. In
this paper, we propose EDITS, a novel training strategy for cloud
failure prediction, which greatly improves the performance of the
existing cloud failure prediction models. Our experimental results
on industrial and public datasets show that EDITS can obviously
enhance the performance of cloud failure prediction model. In ad-
dition, EDITS also outperforms other curriculum learning methods.
More encouragingly, our proposed EDITS has been successfully
applied to Microsoft 365 and Azure online service systems, and has
obviously reduced financial losses caused by cloud failures.

1 INTRODUCTION
Cloud providers, such as Microsoft, Google, and Azure, have com-
mitted to improving the reliability of cloud services [1, 6, 7, 16, 17].
Cloud failures, such as node [4, 23] and disk failures [4], how-
ever, are still inevitable due to hardware [19] aging, software bugs
[15, 36], etc. These failures adversely affect user experience and
lead to economic losses [13, 20].

Over the years, to eliminate the loss of cloud failures, various
approaches [4, 9, 12, 14, 15, 25, 26, 33–35, 37] have been proposed
to make prediction and take proactive actions before cloud fail-
ures happen. These methods regard cloud failure prediction as a
binary classification problem and utilize time series models such
as TCNN [26], RNN [33], LSTM [35] and Transformer [22], which
effectively predict cloud failures and reduce financial losses.

To achieve good prediction performance, existing cloud failure
prediction methods mainly focus on the model design, while ignore
the optimization of training strategies in industrial practice. A good
training strategy like curriculum learning, however, is significant
for the model performance in CV and NLP domains. As illustrated
in curriculum learning [3], human and animals learn much better
when the examples are not randomly presented, but organized in a
meaningful order which illustrates gradually more concepts, and

gradually more complex ones. Machine learning algorithms can also
benefit from such learning process. In this paper, to further enhance
the performance of cloud failure prediction, we leverage the human
learning process mentioned above and propose EDITS, an easy-
to-difficult training strategy. Different from previous curriculum
methods, EDITS takes consideration of cloud failure prediction
scenario and handle difficulty ranking problem for positive and
negative samples separately. For positive samples, we adopt a data
augmentation method [18] and apply prior knowledge to rank
difficulty for augmented samples. In addition, we design a novel
difficulty estimator for negative samples according to the loss values
during training process.

To evaluate the effectiveness and robustness of EDITS, we con-
duct experiments on two industrial datasets and two public datasets
to compare the performance of various models with and without
EDITS. We also compare EDITS with three other training strate-
gies. Experiments on four datasets show that EDITS significantly
improves the performance of cloud failure prediction models and
outperforms the three other training strategies. More encouragingly,
EDITS has been successfully applied to Microsoft cloud platforms
(including Microsoft Azure and Microsoft 365), which improves the
reliability of Microsoft cloud platforms.

The main contributions of this paper are as follows:

• To the best of our knowledge, we firstly leverage training
strategy method into cloud failure prediction.

• We propose EDITS, which utilizes prior knowledge to rank
the difficulty for positive samples and designs a novel diffi-
culty evaluator for negative samples.

• Extensive experiments on industrial datasets and public
datasets demonstrate that our proposed EDITS considerably
enhances the performance of various cloud failure prediction
models.

2 RELATEDWORK
In recent years, many approaches for cloud failure prediction have
been proposed in recent years, such as recurrent neural network
(RNN) [33], long short-term memory (LSTM) [35] and temporal
convolutional neural network (TCNN) [26] and Transformer [18].
These methods mainly focus on the model design, while ignore
the optimization of training strategy, which is also significant to
enhance the prediction performance.
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Curriculum learning (CL) [3] has been attracting lots of attention
in various fields such as computer vision (CV) [8, 10] and natural
language processing (NLP) [21, 31], which is a training strategy
where samples are trained in a easy-to-difficult order. The core
step of CL is to evaluate the difficulty for samples. Curriculum
learning concludes various approaches, such as SPL [11, 27, 29, 30],
SuperLoss [5], and Cross Review method [32].

In this paper, we firstly leverage CL into could failure predic-
tion, and design a novel difficulty evaluator, which enhances the
performance of cloud failure prediction a lot.

3 OUR PROPOSED APPROACH
In this section, we illustrate our proposed EDITS in detail. Firstly, we
give the problem definition of cloud failure prediction in Sec. 3.1.We
introduce the difficulty ranking strategy for positive and negative
samples in Sec. 3.2. Finally, we will introduce the training process
based on ranked samples in Sec. 3.3. The whole architecture of
EDITS is shown as Figure 1.

3.1 Problem definition
Generally, a large cloud platform consists of millions of units such
as disks or nodes, which are denoted as components. To ensure
the reliability of cloud, various monitors record the health state of
components at interval, forming as multidimensional time series
data[24, 28]. Assume 𝑑𝑡 denotes time series data in the range of
ℎ consecutive time stamps from the time tamp 𝑡𝑖 − ℎ + 1 to the
time stamp 𝑡𝑖 . In simple terms, our dataset consists of N samples,
which can be represented as D = (𝑋1, 𝑦1), ..., (𝑋𝑁 , 𝑦𝑁 ), where 𝑋𝑖
represents the state data of 𝑖-th component in the format of 𝑑 , and
𝑦𝑖 denotes the label. If 𝑦𝑖 = 1, it means that the component will fail
in the near future, otherwise 𝑦𝑖 = 0.

Figure 1: Architecture of EDITS.

3.2 Difficulty ranking
In this section, we illustrate the difficulty ranking for positive
(failed) and negative (healthy) samples, which is the core step of
our training strategy. We apply prior knowledge to discriminate
the difficulty of positive samples. In addition, we design a novel
difficulty estimator to evaluate the difficulty of negative samples.

3.2.1 Positive samples. To handle the difficulty ranking for positive
samples, we utilize Temporal Progressive Sampling (TPS) [18], a
data augmentation approach. The core idea of TPS is to regard time
series data within a small number of timestamps ahead failure as
additional positive samples. Specifically, for positive sample 𝑑𝑡 , TPS
augments 𝑑𝑡−1, 𝑑𝑡−2, ..., 𝑑𝑡−𝑘+1, where 𝑘 denotes max leading time.
Obviously, the difficulty of classifying these augmented positive
samples is different. The nearer to failure time, the less difficult it
is for the model to predict failure for the positive sample.

Based on the above prior knowledge, we firstly utilize TPS to
perform data augmentation on positive samples, and then divide
positive samples into k buckets according to their distance to the
failure time (named leading time). Specifically, positive samples
with leading time value 𝑙 are allocated to the 𝑙-th bin. In this way,
the difficulty arises as the bin number.

3.2.2 Negative samples. For negative samples, we design a diffi-
culty evaluator according to the loss value. We train the whole data
for a certain number of epoches and record the loss value of each
epoch for negative samples during the training process. Based on
the loss value, we calculate the difficulty score of each negative
sample as following:

𝑆𝑖 = 𝛼 · 𝑆𝑖−1 + (1 − 𝛼) · 𝐿𝑖 (1)

As shown in Equation 1, for each negative sample, 𝐿𝑖 denotes the
cross entropy loss during the 𝑖-th epoch training, 𝑆𝑖 denotes the
cumulative difficulty score of the first i epoches, which is weighted
by the cumulative difficulty of the first 𝑖 − 1 epoch and the one of
the 𝑖-th epoch. 𝛼 denotes the weight parameter. After𝑚 epochs
of training, we can get the final weighted difficulty score 𝑆𝑚 for
each negative sample. The larger 𝑆𝑚 is, the harder the sample is to
classify. Similar to positive samples, we also divide negative samples
into𝑘 buckets according to difficulty scores in the incremental order.

3.3 Bucket training
As mentioned above, we process difficulty ranking for positive
and negative samples respectively and divide them into 𝑘 buckets.
Based on these buckets, we train samples with an easy-to-difficult
strategy. Specifically, in the 𝑖-th training iteration, we train the
model based on positive and negative samples from corresponding
𝑖-th buckets, respectively. In this way, the model is firstly trained
on easier samples, and then learns harder samples gradually.

It is worth noting that TPS may bring some noises when per-
forming data augmentation. To handle this issue, we perform a
fine-tuning operation when training bucket samples. Specifically,
when we train the samples of the 𝑖-th bucket, we will load the model
with the best performance in the first 𝑖 − 1-th buckets, and train
the samples of the 𝑖-th bucket on the basis of the loaded model. In
other words, we keep the best-performing models of the first 𝑖-th
buckets, and remove the training results of the middle buckets with
poor performance, which can effectively eliminate noise.

4 EXPERIMENTS
In this section, we conduct experiments to demonstrate the effec-
tiveness and robustness of our method. We firstly give the experi-
mental setup in Sec. 4.1, and then introduce the dataset in Sec. 4.2.
We anlayse the experimental results in Sec. 4.3.
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Table 1: Comparison results of various training strategies for various time series models on four cloud failure prediction
datasets. P, R and F1 refer to precision, recall and F1 score respectively.

Model Approach M365 Azure Ali Cloud BackBlaze

P R F1 P R F1 P R F1 P R F1

TCNN

Baseline 90.21 43.76 58.94 66.89 54.28 59.93 30.18 72.44 42.61 75.31 59.17 66.27
SPL 83.12 48.57 61.32 74.91 50.47 60.31 30.82 72.15 43.19 74.91 61.26 67.40
SuperLoss 91.79 45.86 61.17 71.52 54.53 61.88 30.21 74.75 43.03 77.65 56.63 65.49
Cross Review 89.62 46.13 60.91 75.02 53.68 62.58 31.09 75.77 44.09 84.86 59.09 69.67
TPS strategy 91.87 45.66 61.00 73.31 54.10 62.26 30.98 74.60 43.78 77.06 62.01 68.72
Coarse strategy 89.29 46.96 61.55 72.44 54.14 61.97 31.56 76.12 44.62 74.95 62.56 68.20
EDITS 90.88 49.31 63.93 71.95 57.88 64.15 32.56 78.76 46.08 80.33 65.12 71.95

RNN

Baseline 90.59 47.66 62.46 69.07 57.02 62.47 30.74 75.43 43.68 75.08 66.32 70.43
SPL 93.87 47.01 62.59 71.02 55.30 62.18 30.54 81.23 44.39 77.26 67.53 72.07
SuperLoss 91.85 50.04 64.78 72.78 58.86 63.84 31.09 74.78 43.92 78.78 64.86 71.14
Cross Review 90.33 47.78 62.50 71.60 59.43 64.95 31.39 77.07 44.61 89.80 58.25 70.66
TPS strategy 90.44 49.96 64.37 70.88 58.65 64.19 30.98 84.86 45.39 76.65 66.69 71.78
Coarse strategy 91.48 49.38 64.14 72.16 59.18 65.03 32.51 84.53 46.96 76.18 67.29 71.46
EDITS 92.28 50.47 66.25 74.11 62.43 67.77 33.62 87.20 48.53 83.05 65.50 73.24

LSTM

Baseline 90.29 47.79 62.50 72.58 57.83 64.37 30.54 83.61 44.74 75.26 66.19 70.43
SPL 92.85 49.60 64.66 73.62 59.33 65.71 30.32 80.04 43.98 76.35 67.72 71.78
SuperLoss 92.22 47.57 62.76 72.53 61.02 66.28 31.04 83.87 45.31 76.02 66.11 70.72
Cross Review 91.04 50.34 64.83 71.86 61.35 66.19 31.52 84.61 45.93 88.24 58.68 70.49
TPS strategy 93.81 49.19 64.54 71.65 61.88 66.41 31.88 84.73 46.33 88.24 58.68 70.21
Coarse strategy 89.57 50.41 64.52 74.09 60.85 66.82 33.70 84.96 48.26 79.65 64.98 71.57
EDITS 97.10 50.23 66.21 76.41 64.45 69.92 49.53 85.78 49.53 84.51 65.51 73.81

Transformer

Baseline 90.38 48.60 63.21 73.51 60.00 66.07 32.06 80.89 45.92 77.78 67.12 72.06
SPL 89.82 48.19 62.73 72.55 61.77 66.73 31.73 75.14 44.62 77.40 67.27 71.98
SuperLoss 89.04 49.55 63.67 71.92 64.04 67.75 31.33 84.83 45.76 76.53 68.05 72.04
Cross Review 90.62 49.58 64.09 74.03 61.16 66.98 31.17 88.70 46.13 77.01 67.92 72.18
TPS strategy 93.30 49.94 65.06 71.69 64.33 67.81 33.17 86.35 47.93 78.54 68.49 73.17
Coarse strategy 92.87 49.15 64.28 72.80 62.82 67.44 32.82 88.07 47.82 78.54 67.92 73.18
EDITS 92.79 51.83 66.51 76.91 65.06 70.49 35.73 82.42 49.85 69.36 81.54 75.96

4.1 Experimental Setup
We adopt EDITS on four state-of-the-art methods which are widely
used in the cloud failure prediction: RNN, LSTM and TCNN and
Transformer. In addition, we compare EDITS with several state-of-
the-art training strategies such as SPL, SuperLoss and Cross Review.
We also conduct experiments on two training strategies which are
partly similar to EDITS. The brief illustration for each method is as
following:

• Baseline does not utilize any training strategy.
• SPL [11] proposes a iterative self-paced learning algorithm
where each iteration simultaneously selects easy samples
and learns a new parameter vector.

• SuperLoss [5] uses a general loss function to automatically
reduce the contribution of samples with larger losses, i.e.
hard samples, to simulate the curriculum learning process.

• Cross Review [32] randomly divides the data into k parts and
trains 𝑘 models as reviewers. The difficulty of the 𝑖𝑡ℎ data is
determined by the evaluation loss of other 𝑘 − 1 reviewers
training this data.

• TPS strategy only utilizes the prior knowledge for the diffi-
culty ranking of positive samples, and perform the average
random bucketing operation. This strategy is similar with
our proposed EDITS in the operation for positive samples.

• Coarse strategy utilizes a difficulty estimator to score all sam-
ples for difficulty, and then divide all samples into buckets
according to their difficulty scores. This strategy is simi-
lar with our proposed EDITS in the operation for negative
samples.

• EDITS (our method) utilizes the prior knowledge for the
difficulty ranking of positive samples and scores negative
samples with a difficulty evaluator. Then it allocates the
positive and negative samples of the same difficulty level
into the same bucket.

All experiments are conducted on a workstation equipped with
NVIDIA Tesla P100 GPU and CUDA 10.2. The code is implemented
based on PyTorch 1.8. During the training process, we utilize Adam
optimizer and set the initial learning rate as 1e-3. In addition, the
training epoch is set to 100 and the batch size is 128.
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4.2 Datasets
We collect two industrial datasets from Microsoft 365 (M365) and
Microsoft Azure, both serving a large number of customer work-
loads and both containing over two months of cloud component
time series data. Specifically, M365 datasets contain state data for
large amount of disks and Azure dataset also contains the state
data of hundreds of thousands of cloud nodes. In addition, in these
two industrial datasets, the status data of each cloud component is
recorded every hour, and we take the last 72 hours of time series
data as a sample each time.

We also conduct experiments on two public datasets, Ali dataset1
and Backblaze dataset2 [2]. Backblaze takes a snapshot of each run-
ning hard drive, which includes basic drive information in SMART
statistics format. It contains 18 months of data (January 2021 to June
2022). Ali dataset is a real industrial data collected by Alibaba Cloud
data centers which is widely used to evaluate the performance of
cloud failure prediction methods.

The number of positive samples (failed cloud components, de-
noted as ’#Pos’), negative samples (healthy cloud components, de-
noted as ’#Neg’) and feature dimensions for each dataset is shown
in Table 2.

Table 2: Summary ofM365, Azure, Ali and BackBlaze Dataset.

Dataset Dimension Training Set Testing Set

#Pos #Neg #Pos #Neg

M365 32 2799 478096 3552 462939

Azure 23 1706 864623 1673 864656

Ali Cloud 11 987 128569 459 53523

BackBlaze 39 7325 108659 9015 106970

4.3 Experimental Results
In this section, we conduct experiments on four cloud prediction
datasets: M365 dataset, Azure dataset, ali dataset and backblaze
dataset, to compare the results with and without EDITS. And we
also compare EDITS with other training strategies. The result is
shown in Table 1.

4.3.1 Result on Industrial Dataset. We conduct experiments on
M365 dataset and Azure dataset. According to the result, models
with EDITS perform significantly better than those without. Specifi-
cally, the f1 score of TCNN, RNN, LSTM, and Transformer enhanced
by 4.99%, 3.79%, 3.71%, and 3.30% respectively after using EDITS. In
addition, compared with other training strategies., EDITS is more
suitable for cloud failure prediction scenarios.

Taking the Transformer model as an example, the F1 score with
EDITS is 3.78%, 2.84%, and 2.42% higher than those with SPL, Cross-
Review, and SuperLoss, respectively. In addition, EDITS also out-
performs the TPS strategy and Coarse strategy. Based on EDITS, the
F1 score of Transformer is enhanced by 1.45% and 2.23% compared
with TPS strategy and Coarse strategy, respectively.

1https://tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us
2https://tianchi.aliyun.com/competition/entrance/231775/rankingList/1

We also obtained similar results on the Azure dataset. The F1
score of TCNN, RNN, LSTM, and Transformer are enhanced by
4.22%, 5.30%, 5.55%, and 4.42% respectively based on EDITS. In addi-
tion, for the best-performing Transformer model, EDITS still outper-
forms other curriculum learning methods. based on EDITS, the F1
score of Transformer is enhanced by 3.76%, 2.74%, and 3.51% com-
pared with SPL, Cross review, and SuperLoss, respectively. EDITS
also improves the F1 score by 2.68% and 3.05% on the Transformer
model compared with the TPS strategy and Coarse strategy.

4.3.2 Result on Public Datasets. We also conduct experiments on
two public datasets. For the Ali dataset, it is obvious that the models
with EDITS perform significantly better than those without. Specif-
ically, the F1 score of TCNN, RNN, LSTM, and Transformer are
enhanced by 3.47%, 4.85%, 4.79%, and 3.93% respectively based on
EDITS. In addition, our method also achieves better performance
compared to other curriculum learning methods. Taking the best-
performing transformer model as an example, the F1 score based on
our proposed EDITS is 5.23%, 4.09%, and 3.72% higher than that after
using SPL, Cross Review, and SuperLoss, respectively. In addition,
EDITS also outperforms with F1 scores 1.92%, 2.03% higher than
TPS strategy and Coarse strategy, respectively.

Similarly, the models based on EDITS performs significantly
better than those without. Specifically, the F1 score of TCNN, RNN,
LSTM, and Transformer are enhanced by 5.68%, 2.81%, 3.38%, and
3.90% respectively after using EDITS. In addition, EDITS improves
F1 score by 3.98%, 3.92%, 3.78%, 2.79%, 2.78% over the SPL, Cross
Review, SuperLoss, TPS strategy andCoarse strategy for Transformer
model.

5 APPLICATION IN PRACTICE
Our training strategy greatly improves the performance of the
cloud fault prediction model without changing the data composi-
tion, thereby improving the reliability of cloud platform services.
Microsoft Azure and Microsoft 365 large-scale distributed systems
benefit a lot from EDITS. The improvement in reliability will also
further promote the globalization of Microsoft’s cloud service busi-
ness. In addition, we also collect virtual machine outage data from
Microsoft cloud platforms, and the results show that our proposed
training strategy significantly reduces the number of virtual ma-
chine outages on these cloud platforms, which demonstrates the
effectiveness of EDITS.

6 CONCLUSION
Cloud failure is one of the main reasons for the unreliability of
cloud platforms, which plays a vital role in industrial practice. In-
spired by curriculum learning, in this paper, we propose EDITS, a
new training strategy to enhance the performance of cloud failure
prediction. Compared with the existing methods that only focus
on the model design, EDITS considers difficulty of training samples
and follow the order of easy-to-difficult. Extensive experiments
show that EDITS greatly improves the performance of cloud failure
prediction models. Furthermore, our proposed EDITS outperforms
other curriculum learning strategies, which demonstrates the ef-
fectiveness and robustness of our method. We have applied EDITS
into Microsoft cloud platforms and bring considerable financial
benefits.

https://tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us
https://tianchi.aliyun.com/competition/entrance/231775/rankingList/1
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